Hypothesis

* The model assumes that phosphorylation of Shc leads
to a significant reduction cant reduction in its affinity for
EGFR, which is primarily responsible for the predicted
damping of the initial response to EGF” []
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Multiplicity of sites and binding partners gives rise to

combinatorial complexity

Epidermal Growth Factor Receptor (EGFR)
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Shc Pathway

EGF binds EGFR

EGFR dimerizes

EGFR transphosphorylates itself
Shc bind phospho-EGFR

EGFR transphosphorylates Shc

Grb2 binds phospho-Shc

Sos binds Grb2 (activationpath)
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Shc Pathway

Grb2 binds phospho-Shc
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e Three protein that directly interact with phosphotyrosine residues
on the receptor : Gb2; Shc and PLCy.

We also assume that when Grb2, Shc or PLCy are bound to
EFGR, the corresponding phosphotyrosine residues are not
available to receptor phosphotyrosinephosphatases.

It has been reported that the Grb2-Sos complex binds to both

EGFR- and Shc- derived phosphopeptides with higher affinity
than Grb2 alone.




Varying initial levels of EGF, and the responses or the various species

(time 600)Observables
RP : egfr(Y1068~pY!?)egfr(Y1148~pY!?)

RP: EGFR(Y1068~P!?)
ActiveSos : Sos1.EGFR RP2 : egfr(Y1068~pY!?)
ActiveSos : Sos.egfr
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Ambiguity

1) Does Kholendenko’s hypothesis concern the initial
amount of EGF, or is s/he referring to the activeSos
produced?

2) We decided the latter makes more sense...

3) So, we looked at rates of ShcP production, and
compared to activeSos levels.




ShcP/Shc levels
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Initial change of kp 14
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Kp14 , km 14
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We increased the rate of the production of ShcP (kp14). It resulted in decreased number of active Sos.
(plateau?)
We also plotted an increase of km14, which by this theory, should result in more activatedSos (which it



kKp 15, km15
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We tried to simulate the addition of “preformed dimers” as mentioned
by Jorissen, as a factor that may complicate the relation of ShcP to

signaling
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Compare activeSos with and without preformed dimers
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Future Directions

e We have described the model of EGFR systems. This model have

been used to analyze the system and to predict new and
unexpected properties.

So what have we learned and how
should this guide our future efforts in
systems biology?




Future Directions

First, we have learned that models are only useful if experiments
can be designed that directly test specific predictions of the
model; in other words, the predictions must be in a form that can
be directly measured in an experiment. A model that predicts an
increase in receptor dimerization, for example, is only useful if we
can actually measure that parameter. The slow progress in
building comprehensive models of the EGFR system is primarily
due to the difficulty of experimental design and execution. A
model that takes only a few weeks to construct might take years
or even decades to test adequately.l?]




Future Directions

Second, we have found that as models become more complex, the

amount of data necessary to validate them becomes greater than
can be generated by usual laboratory experiments. This
experimental constraint has tended to keep the models small. So,
we have models of trafficking, signaling, heterodimerization and
so forth, but it will be very difficult to combine these into larger,
integrated models until we can determine the best experimental
way to validate such complex constructs. This is where the new,
high-throughput data-generation approach espoused by systems
biology promises to have the greatest impact. Computer-based
models can be used as ‘high-throughput hypotheses’ to exploit
these high-throughput data-generation techniques, such as

advanced imaging or mass-spectrometry-based proteomics.[?]




Future Directions

O

Finally, the ultimate test of any model is whether it can provide a
useful higher-level perspective of a complex problem. From this
viewpoint, we believe the EGFR models have been a resounding
success. For example, we have learned that receptor trafficking
controls the information flux through cells. Cell-surface signaling
represents the instantaneous information presented to the cell,
whereas endosomal signaling represents the integration of
information over many cycles of cell-surface binding. We have
found that ligand availability is the master regulator of the EGFR
system and that regulated ligand proteolysis controls virtually all
downstream receptor activities.[?]




Class Discussion

Some aspects of the model of Kholodenko et al.
(1999) are controversial and might be subject to future
investigation and refinement. For example, the model
assumes that phosphorylation of Shc leads to a signifi-
cant reduction in its affinity for EGFR, which is primar-
ily responsible for the predicted damping of the initial
response to EGF. Although recent molecular dynamics
simulations support a lower affinity of phosphorylated
She for EGFR (Suenaga et al., 2004), the implication
that Shc recruitment and phosphorylation negatively reg-
ulates signaling is problematic in light of earlier experi-
mental work on EGFR signaling (Sasaoka et al., 1994).
In addition, pre-formed dimers of EGFR (Jorissen et
al., 2003) and other complicating features of ligand-
induced receptor dimerization that may influence signal-
ing (Wofsy et al., 1992; Klein et al., 2004) are omitted
in the model of Kholodenko et al. (1999) and its exten-
sions. Our main focus here, however, is to evaluate the
effects of simplifying assumptions made in developing
the pathway-like model, and we therefore keep both the
basic reaction processes and their accompanying rate
constants in the network model so that we can make
a controlled comparison of the two models.
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