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Summary

Biological cells accomplish their physiological functions using interconnected networks of genes,
proteins and other biomolecules. Most interactions in biological signaling networks, such as bimolecular
association or covalent modification, can be modeled in a physically realistic manner using elementary
reaction kinetics. However, the size and combinatorial complexity of such reaction networks have
hindered such a mechanistic approach, leading many to conclude that it is premature and to adopt
alternative statistical or phenomenological approaches. The recent development of rule-based modeling
languages such as BioNetGen (BNG) and Kappa enables the precise and succinct encoding of large
reaction networks. Coupled with complementary advances in simulation methods, these languages
circumvent the combinatorial barrier and allow mechanistic modeling on a much larger scale than
previously possible. These languages are also intuitive to the biologist and accessible to the novice
modeler. In this chapter, we provide a self-contained tutorial on modeling signal transduction networks
using the BioNetGen Language (BNGL) and related software tools. We review the basic syntax of the

language and show how biochemical knowledge can be articulated using reaction rules, which can be



used to capture a broad range of biochemical and biophysical phenomena in a concise and modular
way. A model of ligand-activated receptor dimerization is examined, with a detailed treatment of each
step of the modeling process. Sections discussing modeling theory, implicit and explicit model
assumptions and model parameterization are included, with special focus on retaining biophysical
realism and avoiding common pitfalls. We also discuss the more advanced case of compartmental
modeling using the compartmental extension to BioNetGen (cBNG). In addition, we provide a
comprehensive set of example reaction rules that cover the various aspects of signal transduction, from
signaling at the membrane to gene regulation. The reader can modify these reaction rules to model their

own systems of interest.
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1 Introduction

Biological cells have evolved complex molecular interaction networks that involve genes, proteins and
small molecules and function as information processing units. These networks are dynamic and self-
modifying, responding to cues integrated from the internal and external environments. The traditional
approach to understanding signal processing inside cells has been reductionist, i.e., to examine every
component in isolation and characterize its microscopic behavior based on its structure, its interaction
partners, and the physiological effect that can be observed from its overproduction or negation. Based
on the relationships between components, molecules were organized into roughly linear signaling

cascades that were useful in comprehending the overall role of each set of components.

However, the preponderance of experimental and structural evidence obtained in the last few decades
tells a different story (1,2,3). Signaling cascades overlap with each other by sharing components and are
not strictly delineated, resulting in significant crosstalk between them (for example, (4)). Given two
different contexts (a broad term encompassing chemical, spatial and temporal aspects (1,2,3)), the same
signal can elicit different responses. Thus, in order to understand complex and non-obvious emergent
phenomena, a system-wide mechanistic approach to modeling is necessary. Such an approach is

complementary to the reductionist approach and builds on the available data.

When studying large networks or even large sub-networks, gross approximations are often employed
that form the basis of statistical and bioinformatics approaches to network modeling (5). Explicit
reaction-kinetic modeling of signaling pathways may be more realistic, but has been limited by several
issues (6): the high level of uncertainty in current knowledge about the key molecular players and
interactions, the combinatorial complexity that arises from multiple states of each molecule and
multiple molecules in a complex, the computational effort required to simulate large reaction networks

using generally available methods and the difficulty in maintaining and reusing large-scale models.



One solution to the above issues still followed by many practitioners in the field is to ignore the many
combinations of complexes and many possible molecular states, in order to achieve a model size that
can be understood, simulated and analyzed. Such approximations on model structure may be subjective

and are usually difficult to test.

Recently several groups have developed new modeling languages and approaches designed to enable
the development of large-scale biochemical models without the need to make ad hoc assumptions. In
these so-called “rule-based approaches” (reviewed in (7,8)), molecules are treated as objects with a
defined substructure and reactions are described using reaction rules. Unlike the standard reaction
description where the entire reactant species is named distinctly, in a reaction rule, it suffices to
represent only those parts of a reactant that actually participate in the reaction or affect the ability of

the reaction to occur or its rate.

Since these substructures can be shared between many reactants, a reaction rule effectively represents
multiple reactions with identical kinetic descriptions and parameters. This also results in a reduction in
the number of essential parameters required by the model. By taking advantage of the modularity
exhibited by protein interactions, one can effectively represent a combinatorially complex (potentially
infinite) reaction network by a much smaller and finite set of reaction rules. By providing a formal
language to intuitively represent detailed biophysical and biochemical information and providing
algorithms to automatically mathematize and simulate such models, rule-based modeling languages
(such as BioNetGen (9,10) and Kappa (11,12)) form a much-needed bridge between descriptive

reductionist biology and exact mathematical modeling and simulation.

BioNetGen (BNG) (9,10) is a rule-based modeling framework and language that has previously been
described in detail by Faeder et al. (9). While Faeder et al. focused on presenting a comprehensive

description of the modeling language and software capabilities, we present here a self-contained



tutorial on developing models following the rule-based approach. Although some aspects of the process
are specific to the BioNetGen modeling language (BNGL) and tools, much of the information presented

is broadly applicable to developing detailed reaction kinetic models of signaling.

We show that the rule-based syntax and approach provides an excellent way not only to develop models
and simulations, but also to encode biochemical knowledge in a concise and modular way. We also do
not assume any specialized knowledge on the part of the reader. We provide suggestions about
common difficulties in the creation and representation of large reaction models in general and rule-
based models in particular. Most importantly, we provide a comprehensive set of scenarios that can be

easily studied and modified by a novice modeler and applied to any biological system of interest.

The remainder of this chapter is structured as follows. The Software section indicates where to obtain
BioNetGen and related software. The Model Representation section introduces the elements of a rule-
based model and the basic syntax of BNGL. The Writing Rules section illustrates basic techniques and
nuances behind writing reaction rules. The Modeling Background section discusses theory and methods
necessary for large-scale reaction models. The Tutorial section shows how to construct, simulate and
analyze a complete BNGL model using biological knowledge and hypotheses. The Compartmental
Modeling section discusses the more advanced concept of rule-based models in a structured hierarchy
of compartments. The Biological Parameterization section talks about challenges involved in
parameterizing signal transduction models. The Downstream Signaling section builds on these technical
aspects and provides examples of common biological mechanisms of signal transduction, including
complex assembly at the membrane, secondary messenger activation, kinase cascades and gene

regulation. Finally, a summary of key points is provided in the Good Modeling Practice section.

2 Software



In order to follow the examples and to gain hands-on experience with the software, it is highly
recommended that the reader obtain access to BioNetGen before proceeding. Two convenient
interfaces are available. First, a stand-alone graphical user interface called RuleBender can be obtained
from free of charge http://rulebender.org. RuleBender includes a model editor, network browser,
simulation interface, and simulation results viewer. Binary distributions of RuleBender are provided free
of charge for Windows, Mac, and Linux, and these also include both binaries and source code for
BioNetGen. RuleBender can be used to construct, simulate, and plot the output of all examples
presented in this chapter. The latest developmental version of the BNG source code as well as additional

documentation and model examples can be found at http://bionetgen.org.

Second, a Java-applet based interface is available free of charge through the Virtual Cell modeling
platform (http://vcell.org). The interface to BioNetGen contains an editor, simulation interface and
plotting tools. Not all advanced features of BioNetGen are available, but this is a good way to try

modeling with BNGL without having to download or install any software.

3 Model Representation

3.1 Molecules and Components

In the context of signal transduction, a reaction kinetic network typically involves multiple functional
complexes of biological entities such as proteins and small molecules. In a traditional reaction kinetic
model, each configuration of the complex is given a unique name and is treated as a single unit that can
participate in reactions. The modeler would need to identify every unique configuration and assign it a
name or a label. From this list of names, the modeler would have to pick out every possible combination
of reactants and products and write out the reactions by hand. Due to the combinatorial nature of
association between proteins, this approach can be cumbersome and limits not only the modeling

process, but also the computational memory required to store, manipulate and simulate a model.



Rule-based modeling takes a more structured approach. Indivisible entities in the model that associate
with other indivisible entities are called molecules. Multiple functional attributes for each molecule
type are described using a number of components. This mirrors the hierarchical nature of real biological
entities, for example, proteins have multiple functional substructures such as domains, motifs and
binding sites. These components can be unchanging (called stateless) or exist in one of many different
internal states. For example, certain binding motifs may have different behaviors depending on whether

they are unphosphorylated or phosphorylated.

Consider a receptor with the following functional substructures: a ligand binding site and a channel that
is either open or closed. The BNG molecule type blueprint for such a molecule would be:

R(lig, ch~open~closed). R is the name of the receptor molecule, 1ig is the ligand-binding site and ch is
the channel. 1ig is stateless, whereas ch can take states open or closed, indicated using the tilde

symbol(~).

Multiple components within a molecule type can have the same name and will be treated identically.
For example, the molecule type 2 (x, x, y) has two identical but independent x components and one y
component. When defining the molecule type, one must ensure that identically named components
have identical sets of allowed states. For example, A (x~a~b, x~a~b, y) is a valid molecule type, but

A (x~a~b, x~b~c,y) is invalid since the two x components have been assigned different sets of allowed

states.

The molecule itself (created from the molecule type blueprint) can only take one state for each
component at any given time. Therefore, given the molecule type R (1ig, ch~open~closed), the
following molecules can be created: R (1ig, ch~open) and R(lig,ch~closed). In the traditional

modeling framework, we might refer to them by names such as R, and R.. The order in which the



components are written within the molecule is immaterial and R (1ig, ch~open) means the same as

R(ch~open, lig).

3.2 Bonds and Species

A BNG molecule can associate with another molecule through a bond between their components. Bonds
can be formed between both stateless components and components with states. The two “bonded”
components are indicated by an exclamation mark followed by a unique label that marks the two ends

of the bond. A component cannot participate in more than one bond at any given time.

For example, the molecule ligand molecule 1. (rec) and receptor molecule R (1ig, ch~open) can
associate using a bond between the rec and 1ig components, represented as
L(rec!0).R(1lig!0,ch~open). The bond label ‘0’ after the exclamation marks indicates that rec and
lig are bound. The dot between 1.() and r() indicates that they are in the same complex. A good
convention to follow is to label bonds with numbers. In the absence of identifying information about the
structural domains or motifs involved, label components based on the molecule that they are supposed

to bind.

The same bond between the same pair of components can be represented using different labels in
different places as long as the right pair of components is matched, for example,

L(rec!0).R(1lig!0,ch~open) is the same as L (rec!2) .R(lig!2,ch~open).

In the traditional modeling framework, this complex may be named R,L. The corresponding complex
with the channel closed, i.e. L. (rec!0) .R(1ig!0, ch~closed) may be referred to as R.L. By providing a
systematic way of linking molecules together, BNGL enables the systematic representation of any

arbitrary complex.

For example, the following is a valid complex:



A(x,y!0).B(p!0,g~abc!l).C(r~def!l,s!2).A(x!2,y)

This complex has two 2 molecules, one each of 8 and ¢ molecules. One 2 binds B using a y-p bond
labeled 0. The other a binds c using an x-s bond labeled 2. B binds c using a g-r bond labeled 1. gand r
are in abc and def states respectively. Dots separate the molecule names and all bonds have unique
labels. The order in which the molecules are written is immaterial as long as the same pairs of
components are bonded and the same internal states are assigned. The same complex can also be

written as:

B(p!0,g~abc!l) .C(r~def!l,s!2).A(x!2,y) .A(x,y!0)

Such structured representation provides an important advantage over the traditional modeling
approach. The modeler does not need to assign a unique name to every complex configuration. The
name space that the modeler has to comprehend is limited to the number of molecules and
components and not the possibly infinite number of complex configurations. Where finite, the

construction of the full set of configurations can be easily automated.

BioNetGen uses the term species to refer to any unique configuration of one or more moleculesin a

complex. The critical elements of a unique species definition are:

¢ identifying every molecule in the species (including repeated ones)
¢ identifying internal states taken by every component (including repeated ones)

e identifying every component pair linked by a bond

3.3 Transformations and Reactions

In the BNGL, a reaction is simply one or more transformations applied simultaneously to one or more

species. The following transformations are allowed:

e Formingabond, e.g. A(b) + B(a) -> A(b!0).B(a!0)



e Breakingabond,e.g.A(b!0).B(a!0)-> A(b)+ B(a)
e Changing of component state, e.g. x (y~0) -> X (y~p)
e Creating a molecule, e.g. A(b) -> A(b) + C(d)

e Destroying a molecule, e.g. A (b) + B(a) -> A(b)

A single reaction may involve any number of transformations. For example,

A(b) + B(a!0).C(d!0) -> A(b!0).B(a!0) + C(d)

Here, the a-d bond is broken and the b-a bond is formed simultaneously. Another example:
A(b) + B(a!0).C(d!0) -> A(b!0).B(a!0)

Here, the a-d bond is broken, the b-a bond is formed and the c (d) molecule is destroyed
simultaneously. Usually, it is advisable to restrict the number of transformations in a reaction to one or

two.

4 Writing Reaction Rules

4.1 Combining multiple reactions

Consider the ligand and receptor defined in the Section 3.1. Let us assume ligand binding and channel
opening/closing are independent of each other. This means that both open and closed forms of the

receptor bind the ligand with the same rate constant k.

Ro+L >Rl k

Rc+L ->R.L k
The ordinary differential equation description (ODE) for this set of reactions is:

d[R,]  d[R,L]
- dt =+ dt —k[Ro][L]

1N



dR] | d[RL]
-5 =+ = KIRC[L]

d[L]
— 3¢ = KIR][L] + K[RA[L] = k([Ro] + [ReD[L]

Since the rate constant k is common in the first two ODEs, we can add them up.

_d([Ro] +[RcD) _ N d([RoL] + [R.L])

dt dt

= Kk([Ro] + [RcDIL]

d[L]—k R R L
T ([Ro] + [RcDIL]

Let us create two new terms:

[Ro/c] = [Ro] + [Rc]

[RO/CL] = [RoL] + [RcL]
Using these two new terms, we can compress the original set of ODEs as:

d[Ro/]  d[L]  d[RocL]
TTa o Ta T a = k[Ro/c][L]

Note that we have simply summed the binding rates for open and closed receptors. The fact that the
two reactions have an identical rate constant k, enables us to use the summed terms in a compressed

manner. Representing this compressed description using traditional labels, we might write it as:

Ro/c +L-> RO/CL k

BNGL provides an intuitive way to formulate such compressed representations using reaction rules. In
rule-based modeling, creating a new label such as Rq/c0r Ry/cL is not necessary. A reaction rule can be
created from many reactions (that have identical kinetics) simply by omitting the components that do

not influence the reactions. For example, consider the same reactions represented in BNGL:

11



R(lig,ch~open) + L(rec) -> R(lig!0,ch~open) .L(rec!0) k
R(lig,ch~closed) + L(rec) -> R(lig!0,ch~closed) .L(rec!0) k

Here, the state of the ch component does not affect the rate constant for the 1ig-rec binding.
Therefore we can omit the ch component to create a reaction rule that represents both of the above

reactions:

R(lig) + L(rec) -> R(lig!0) .L(rec!0) k

Thus a reaction rule can be thought of as a generator of reactions where each generated reaction must
have some substructure that corresponds exactly to the reaction rule. The generated reactions have

identical kinetic descriptions at the microscopic level.

Suppose the open and closed channels had two different rate constants of association with ligand, i.e.

Ro+L ->RoL ky

Rc+L ->R.L ks,

Since the kinetics of the two reactions are fundamentally different, we cannot create a single reaction
rule from these two reactions. We can only create two different reaction rules (which happen to be
identical to the reactions):

R(lig,ch~open) + L(rec) -> R(lig!0,ch~open).L(rec!0) k1l

R(lig,ch~closed) + L(rec) -> R(lig!0,ch~closed) .L(rec!0) k2

Thus, identifying independent interactions is the key to writing a rule-based model. If within a molecule,
every component influences every other component and if the same is true for all molecules, then the
number of reaction rules is identical to the number of reactions. As more and more independent

interactions are identified, the number of reaction rules required to represent a reaction network

decreases.

19



Bidirectional reaction rules can be combined into a single line using bidirectional arrows and two
reaction rate constants. However, BioNetGen still interprets them as two different reaction rules. For

example, the bidirectional reaction rule
R(ch~closed) <-> R(ch~open) k open,k close
will be interpreted as two reaction rules:

R(ch~closed) -> R(ch~open) k open

R (ch~open) -> R(ch~closed) k close

4.2 Patterns & Species

Consider the reaction rule
R(lig) + L(rec) -> R(lig!0) .L(rec!0) k

As we already saw in the previous subsection, if the molecule types were R (1ig, ch~open~closed) and
L (rec), then this reaction rule would generate the following reactions:

R(lig,ch~open) + L(rec) -> R(lig!0,ch~open) .L(rec!0) k

R(lig,ch~closed) + L(rec) -> R(lig!0,ch~closed) .L(rec!0) k

Note how the complexes are fully specified in the reactions, i.e. all the components of all the molecules
present and all the corresponding binding and internal states are mentioned. As mentioned in the
previous section, a fully specified complex definition is called a BNG species. In the reaction rule,

however, the complexes are not fully specified. A partially specified complex is called a BNG pattern.

The reactants of a reaction rule are called the reactant patterns and they are said to match the reactant
species of the reactions. The reactant pattern r (1ig) matches the reactant species R (1ig, ch~open)
and R (1ig, ch~closed). Similarly, the reactant pattern 1. (rec) matches the reactant species L (rec).

Pattern matching to generate reactions is summarized in Figure 1.

12



Patterns lie at the heart of rule-based modeling. Patterns can be said to select species that possess a
matching substructure. A reaction rule is effectively a set of reactant patterns and a set of
transformations applied to those patterns. A reaction is generated by selecting species that match the

reactant patterns and applying the transformation to them to get the product species.

4.3 Observables

Many biological experiments involve following the time-courses of experimental outputs, often referred
to as trajectories. Each output is usually specific to a single collection of species. For example, in a FRET
experiment on receptor aggregation, one might design the experiment such that only dimers can
produce fluorescence, and the fluorescent output is a function of the total concentration of all dimer
species. Similarly in a Western blot experiment using an antibody specific to a particular protein, the
measurement at different time points is proportional to the total concentration of the protein available
for binding. In a BNG model, one can similarly define specific sums of concentrations of species that are
of interest and need to monitored or tracked through the simulation of the model. Such sums are called

observables and are of two types: molecules-observables and species-observables.

Consider the molecule types A (b, b, c), B(a) and c (a). A can bind two B and one C. This results in the

following species:

B B(a)

C C(a)

A A(b,b,c)

AB A(b!0,b,c).B(a!0)

BAB A(b!0,b'!'l,c).B(a!0).B(a!l)

AC A(b,b,c!2).C(a!2)

ABC A(b!0,b,c!2).B(al!0).C(a!2)

1A



BABC A(b!0,b!l,c!2).B(a!0).B(a!l).C(a!2)

A species-observable is an unweighted sum of the concentrations of species matched to a pattern (or a
list of patterns). For example, let us define a species-observable to be the pattern: & (b) . This pattern
matches any species that contains an 2 molecule with an unbound b component. The species A and AC
have two unbound b components each and the species AB and ABC have one unbound b component
each. Thus the observable would match all four of these species (but not the species BABC). The value of
this observable would be given by the sum [A]+[AB]+[AC]+[ABC], which would vary over the course of a

simulation.

A molecules-observable weights the concentrations of the species by the number of matches to a

pattern (or a list of patterns). For example, let us define a molecules-observable with the same pattern:
2 (b) . This would match species AB and ABC once each and the species A and AC twice (since they have
two unbound b sites). The value of this observable would be given by the sum 2*[A] + 2*[AC] +1*[AB] +

1*[ABC].

4.4 Reaction Center & Context

Consider the reaction rule:

R(lig) + L(rec) -> R(lig!0).L(rec!0) k

The transformation applied in this rule is the creation of the 1ig-rec bond. The components that
participate in the transformation(s) carried out by a reaction are collectively called the reaction center.

Here, the reaction center is the set of components 1ig and rec.

Now consider another reaction rule:

R(lig,ch~open) + L(rec) -> R(lig!0,ch~open) .L(rec!0) k1

1



Here, the same transformation is being applied, i.e. the 1ig-rec bond, and therefore it has the same
reaction center (underlined for emphasis). However, the additional ch component in the open state is
required to indicate that if the channel is open, then the reaction rate should be k;. The components
that do not participate in the reaction, but are nevertheless required and influence the reaction rate

constant are collectively called the reaction context.

Finally, consider the reaction rule:

R(lig,ch~closed) + L(rec) ->R(1lig!0,ch~closed).L(rec!0) k2

This rule also has a reaction center identical to the previous rules (underlined for emphasis). However,

the reaction context is now ch~closed and the rate constant is k,.

When a reaction rule is used to generate reactions, the reaction context provides minimum compulsory
conditions that need to be obeyed by the generated reactions. In the absence of any reaction context,
the reaction rule is general and matches all possible reactions having the same transformation. Adding
more context ‘specializes’ the reaction rule to match fewer reactions that obey the conditions imposed
by the context. The reaction itself can be considered as a highly specialized reaction rule with every

component in the interacting species added as context.

Note that in bidirectional reaction rules, the context is preserved in both directions. For example,

consider the bidirectional rule (with reaction center underlined for emphasis):

R(lig,ch~closed) + L(rec) <-> R(lig!0,ch~closed).L(rec!0) k2, kr

This is equivalent to the two reaction rules, both with ch~closed as context:

R(lig,ch~closed) + L(rec) -> R(lig!0,ch~closed) .L(rec!0) k2

R(lig!0,ch~closed) .L(rec!0)-> R(lig,ch~closed) + L (rec) kr

4.5 Synthesis and Degradation

12



When writing a reaction rule in BNGL, one must make sure that there is at least one reactant pattern
and one product pattern. However, there are a number of situations where the number of molecules on
either the reactant side or the product side of the reaction is zero. To indicate zero stoichiometry, one

can use the symbol 0 (zero).

When the reactant side of a reaction rule has zero stoichiometry, the reaction is treated as a zero-order

synthesis reaction, for example:
0 -> L(rec) k syn

This reaction rule should produce the ligand molecule at a constant zero-order rate, which is equal to
k_syn (typical units M s™). Zero-order synthesis is useful to model the case where a reacting agent is
continuously flowing into the system from the outside, for example, the continuous movement of

growth factors from the blood to any body tissue or the controlled flow of nutrients in a bioreactor.

Where the synthesis depends on the concentrations of specific molecules, it is better to use first-order
and second-order elementary reactions. For example, the production of mRNA from a gene depends on

the number of actively transcribing copies of the gene in a cell:
Gene () —-> Gene () + mRNA k transcription

When the product side of a reaction rule has zero stoichiometry, it has no bearing on the rate of the
reaction since the rate is determined only by the reactant concentrations. Such reactions are typically
used to model spontaneous or background degradation, which occurs in some form or the other with

most biomolecules. For example, to model spontaneous degradation of the receptor:
R() -> 0 k degr
The internal and binding states of components can be mentioned to restrict the degradation to only

certain types of molecules. For example, if the only receptors degraded were those in the closed state:

17



R(ch~closed) -> 0 k degr

It is important to note that in a degradation reaction rule, the complete matched reactant species is

degraded and not just the molecules mentioned in the rule. The above reaction rule will generate the

following reactions:

R(lig,ch~closed) -> 0 k degr

R(lig!0,ch~closed) .L(rec) -> 0 k degr

To delete only the molecules concerned (and not the whole species), use the DeleteMolecules

keyword:

R(ch~closed) -> 0 k degr DeleteMolecules

In this case the connected molecules are not deleted and this would generate the following reactions:

R(lig,ch~closed) -> 0 k degr

R(lig!0,ch~closed) .L(rec) -> L(rec) k degr

4.6 Symmetry, Multiplicity and Rate Addition

Consider the following situation: The A molecule can dimerize. It exists in two different isoforms A; and

A, and both hetero- and homo-dimerization occur. Expressing this in the traditional framework, this

implies the existence of three different reactions:

A1+ A; > Dy
A1+ A;->Dyg

A+ A; > Dy

Even if both hetero- and homo-dimerization have identical interaction strengths (affinities), the homo-

dimerization would proceed at half the rate of the hetero-dimerization due to the symmetry in picking

out a homo-dimerizing molecule pair. Therefore, the rate constants are usually expressed as:

1Q



A+ A, >Dq, k
A+ A;->Dpy k/2

A+ A, -> Dy k/2

Here, one can think of “k” as the asymmetric reaction rate constant and the (1/2) multiplying factor as
being due to the symmetry effect. Expressing these reactions using BNG species and representing the

two isoforms as two different states,

A(iso~al) + A(iso~a2) -> A(iso~al!0).A(iso~a2!0) k
A(iso~al) + A(iso~al) -> A(iso~al!0).A(iso~al!0) 0.5*%k
A(iso~a2) + A(iso~a2) -> A(iso~a2!0).A(iso~a2!0) 0.5*%k

BioNetGen automatically detects reaction symmetries and applies the symmetry factor even if the
reaction rules themselves are asymmetric. When writing a reaction rule, the modeler must always
provide the asymmetric reaction rate constant. All three reactions above can be generated with the

right reaction rate constants using only the single rule:

A(iso!0) + A(iso!0) -> A(iso!0).A(iso!0) k

The states of the iso component are left unmentioned in the reaction rule since they do not affect the
asymmetric reaction rate constant. BioNetGen detects that some of the generated reactions are
symmetric and some are not. It then automatically assigns the (1/2) multiplying factor to the symmetric

reactions.

The multiplicity effect is seen when interactions are multivalent. Suppose the molecule A has two
identical sites for binding the molecule B. Then, in the traditional framework, one would write the

following reactions.

10



A+B->AB

AB + B -> BAB

Even though the two binding sites have identical and independent chemical interactions, the first
reaction should proceed at twice the rate of the second because A has twice the number of binding sites

as AB. This is usually expressed as:

A+B->AB 2%k

AB + B -> BAB k

Since BNGL allows multiple identical components in a molecule, it automatically accounts for the
multiplicity factor when generating the reactions. The modeler must always provide the per-site
reaction rate constant. If the molecule types are A (b, b) and B(a), then it is sufficient to write the

following reaction rule:

A(b) + B(a) -> A(b!0).B(a!0) k

This would automatically generate the following reactions.

A(b,b) + B(a) -> A(b,b!0).B(a!0) 2%k

A(b,b!0).B(a!0) + B(a) -> A(b!1,b!0).B(a!0).B(b!1) k

Lastly, if multiple reaction rules generate two versions of the same reaction, both are kept in the
reaction network because they may have different rate constants or rate laws. During simulation, the
net effect of the two identical reactions is additive, i.e. the rate of the transformations proceeds using
the sum of the rates of the two copies. This is important when considering events such as
dephosphorylation that might occur through general and specific mechanisms. For example, consider

the following set of rules:

A(y~p) -> A(y~0) k bkgrnd
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A(y~p) -E() -> A(y~0).E() k enzyme

The second rule requires complexation with E for dephosphorylation to occur, whereas the first does

not. These rules will generate two copies of the same reaction with different rate constants:

A(y~p,e!l).E(a'l) -> A(y~0,e!0).E(a!l) k bkgrnd

A(y~p,e!l).E(a'!'l) -> A(y~0,e!0).E(a!l) k enzyme

During simulation, the effect of these two reactions on the species 2 (y~p,e!1) .E(a!l) isa

unimolecular transformation with a net rate constant equal to the sum k_bkgrnd+k_enzyme.

4.7 Wildcards & Context Modification

BNGL provides syntax to tailor the context of a reaction rule to only match specific sets of reactions. The
absence of an exclamation mark indicates that a component must be unbound. For example, the pattern

A (b, c) will not match the speciesa (b, c!1).c(a!0).

If the presence of a bond is contextually important, but the identity of the binding partner is not
relevant, then the + wildcard is used with the bond symbol. For example, the pattern a (b!+, c¢) will
match both 2 (b!0,c) .B(a!0) and A (b!0,c) .P(q!0) and any other species with a bound b component

and an unbound c component.

To match both unbound and bound components, one can use the 2 wildcard with the bond symbol. For

example, the pattern A (b!?,c) matches both species A (b,c) anda(b!0,c).B(a!0).

If the internal state of a component is not relevant to the context, the ~state definition can be omitted.
The presence or absence of a ! symbol is still used for context. For example, the pattern r (s) matches

both species R (s~x1) and R (s~x2) but not the species R (s~x1!0).5(r!0).

The dot symbol can be used to indicate the presence of another molecule in a complex even if the

explicit bond links are not shown. For example, the pattern c () .a (b) will match both species
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C(x!0).A(b,c!0) andc(x!0).A(b,c!1).X(a'l,c!0), eventhoughc isconnected to a directly in the
first species and indirectly through x in the second species. This is useful when the same molecule can

be linked to a complex in different ways but performs the same function, for example, a kinase.

The bond and state wildcards, as well as the dot-operator can be used to tailor patterns in observables

as well as reaction rules.

In reaction rules, more flexibility in defining context is provided by the include [reactants/products]

and exclude [reactants/products] keywords. For example, consider the reaction rule

A(b) + B(a) -> A(b!0).B(a!0) k ab exclude reactants(1l,E,F(g))

The number 1 in the exclude reactants directive indicates that it applies to the first reactant pattern.
The remaining elements within the parentheses indicate the additional context that will cause exclusion.
Here, it means that if the rule matches reactants with & or F (g) in the reactant 1 position, then those

reactants would be discarded. Therefore, the following reactants would be excluded:

A(b,x!1).E(a!l)

A(b,x!'1).F(a'!l,q)

However, since only an unbound F (g) component is excluded, a reactant with a bound r (g) component

(underlined for emphasis) would not be excluded, for example:

A(b,x!1).F(a!l,g!2).G(£!2)

The include reactants () works similarly to the exclude reactants (), but here the condition

imposed is that all the additional context must be included.

For example consider the following reaction rule.

A(b) + B(a) -> A(b!0).B(a!0) k ab include reactants(2,E,F,G)
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This rule is equivalent to the reaction rule:

A(b) + B(a).E().F().G()-> A(b!0).B(a!0).E().F().G() k ab

Both rules are different ways of saying that £ (), F() and c() molecules should be present in the
second reactant species. Note that for bidirectional reaction rules, [include/exclude] reactants() is

treated as [include/exclude] products for the reaction rule in the reverse direction.

5 Modeling Background

5.1 Law of Mass Action

By default, BioNetGen assigns rates to reactions based on the Law of Mass Action for Elementary

reactions.
This means that for a unimolecular reaction:
A = Products Kuni

the rate is determined by the concentration of the reactant as follows:

d[A]
Rater = BT KunilAl Molar/sec
Similarly, for a bimolecular reaction:
A + B - Products Kpi
Rater = d[A]— d[B]—k[A]B Mol
ater = T o~ Kbi [B] olar/sec

The reaction rate here is expressed in volume-independent “macroscopic” terms, i.e. Molar/sec. But to

aid modeling flexibility and simulation, it is preferable to specify rate constants such that the reaction
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rate is given in reaction-events/sec. This “microscopic” rate is related to the macroscopic rate by a factor

of the volume in which the reaction occurs times Avogadro’s number.

Na
r=d[A] :d(VNAVO) _ 1 dNA:( 1 )r,
dt dt VNavo  dt

=1’ = rXVNuyo
where r = Macroscopic rate constant (M~1s™1)

and r’ = Microscopic rate constant (s~ 1)

kuni and ky; are unimolecular and bimolecular reaction rate constants respectively with units sec™ and
Molar™ sec™. In general, any n" order volume-independent “macroscopic” reaction rate constant should
have the units Molar'"sec™. However, since BioNetGen treats the rate as microscopic, the modeler must

convert the macroscopic rate constants to microscopic ones, as follows.

For unimolecular reactions, if Ny denotes the population number of the reactant molecules, then the
microscopic rate is:
r,(s_l) = rXVNayo = Kyni [A] XVNavo = Kyni (_
r' = KuniNa

For bimolecular reactions, if Ny and Nz denote the population numbers of the two participating

reactants, then the microscopic rate is:

P Na Ng
r'(s™") = rxXVNayo = kpi[A][B]XVNypyo = kuni( )( ) XVNavo

VNAVO
Ky
I', = ( bi )NANB

If we define the microscopic reaction rate constants k’,,; and k’y; as:
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For unimolecular reactions, r’ = k{;;Na

For bimolecular reactions, r’ = ky;NsNg

Then the relationship between macroscopic and microscopic rate constants is given by:

In general,

k
L n=1

k' =0, =
nthorder (VN pyo)P~t

Thus, when writing a unimolecular reaction rule in BNGL, one does not need to worry about converting
the unimolecular reaction rate constant as long as it is in sec™:
A (x~on) -> A(x~off) k uni

where x_uni is defined as a parameter with units s™.

When writing a bimolecular reaction rule in BNGL, however, one should convert the bimolecular

reaction rate constant to sec™:
A(b) + B(a) -> A(b!0).B(a!0) k

where the parameter k can be defined by an expression kx_bi/ (v*N_aAvo) involving other parameters:

k_bi with units Molar/sec, v with units liters and N_avo is defined as 6.022 x 10% per mol.

If bimolecular and higher order reactions occur in different volumes, then the reaction rate constant
needs to be scaled differently for the reaction occurring in each volume. The modeler has to explicitly
include the volume in the rate constant or use compartmental BioNetGen (cBNG), as described in

Section 7. Unimolecular reactions do not need to be scaled by volume.
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The following assumptions are made under this paradigm: The reaction occurs in a fixed volume reactor
at constant temperature and pressure and the molecules are distributed uniformly through the volume,
i.e. there are no spatial gradients. Although these seem to be strong assumptions, they are often

reasonable for biological models of events on the plasma-membrane and in the cytosol (13). Diffusion in

these compartments is often sufficiently fast that spatial effects remain minimal.

5.2 Reaction Order & Transformation Reversibility

Reaction orders higher than two are rare at the molecular level since the probability of three or more
freely diffusing molecules finding each other simultaneously and in the right orientation is small.
Although BioNetGen supports reactions of any non-negative integer order, it is prudent to restrict the
model to a set of unimolecular and bimolecular reactions (i.e. first and second order reactions) in order

to maintain physical realism and keep model assumptions to a minimum.

It is advisable to model every associative complex-forming interaction as a bimolecular association
reaction between a pair of reactants. Also, in the context of protein-protein and protein-ligand
associations, most association reactions are due to the cumulative effect of many weak non-covalent
interactions that can be broken and re-formed. Therefore, unless an interaction is specifically known to
be irreversible, it is recommended that every bimolecular association reaction be paired with the
complementary unimolecular dissociation reaction. Such complementary modeling is advisable for all

transformation pairs such as synthesis/degradation and phosphorylation/dephosphorylation.

Such pairing is important to prevent system blow-up or depletion. This happens when a unidirectional
transformation is initiated and all the relevant molecules in the system get transformed in bulk,

regardless of the magnitude of the initial stimulus. This is usually not intended or reasonable biological
behavior. For example, synthesis alone will lead to artificially high numbers and degradation alone will

lead to complete depletion of a molecule type or set of molecule types. Similarly, modeling
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phosphorylation alone will lead to runaway phosphorylation of the entire system (instead of a graded

response) unless paired with dephosphorylation mechanisms.

5.3 Catalysis & Sigmoidal Kinetics

5.3.1 Michaelis-Menten Kinetics

The kinetic formulation of a catalytic process dates back to Michaelis and Menten (14) and Briggs and

Haldane (15). The enzyme/catalyst binds to the substrate in a reversible fashion. A fraction of the bound

complex causes the substrate to be converted to the product and dissociate simultaneously in a

unimolecular fashion. The canonical formulation is:

kf kcat
E+S<=ES—E+P
Ky

Applying reaction kinetic theory, reaction flux through ES is given by

d[ES]
T = kf[ES] - (kr + kcat[E] [PD

Applying a quasi-steady state approximation on [ES] and using mass conservation laws,

d[ES]

——= %0

dt

[Elr[S]

= [ES] ~ (kr+k_fkcat) +[S]

where [E]; is total enzyme concentration (i.e. [E] +[ES]) which can be assumed to be constant.

The rate of conversion of substrate (and formation of product) is then given by

__dist dIPT _ KenelElrlS] VialS]
r= ~ + ~ Keat[ES] = (kr+k—fkcat) +[S] B Km + [S]

dt dt
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kr + kcat

m and maximum rate V.5 = Keat[El
£

where the Michaelis constant Ky =

According to this formulation, the reaction rate should saturate when there is excess substrate, i.e.
[S] » Ky = 1 = Vinax = KeatlElr

Note that the rate is still first-order with respect to enzyme concentration. The Michaelis-Menten rate
law can be thought of as an extension to the elementary rate law where the microscopic rate “constant”

is not really a constant but a function that depends on the concentration of the substrate, i.e.

_ kcat[E]T[S] _ _ kcat[s]
= KM—+[S] = f(S)X[E]t, where f(S) = —KM 5]

Note that the [S] term in the reaction indicates free substrate concentration which is equal to the total
substrate concentration minus the substrate sequestered with the enzyme, i.e. [S]; — [ES]. Often the [ES]

term is quite small relative to [S]y and can be neglected, i.e.

kcat [S] T

[ES] < [Shr = [S] ~ [Shr = (5) = = =y

As a shortcut, for a single enzyme-substrate pair, the Michaelis-Menten rate law can be implemented in
BNGL using the MM or sat keywords. The substrate is given as the first reactant and the enzyme is given

as the second reactant:

S(x~0) + E() -> S(x~p) + E() MM (kcat, KM)
or,
S(x~0) + E() -> S(x~p) + E() Sat (kcat,KM)

The MM rate law calculates the free-substrate concentration [S] and is more accurate than the sat rate

law which approximates it as the total substrate concentration [S].
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5.3.2 General Sigmoidal Kinetics

In general, if there are multiple reactants and it is required to saturate the rate with respect to a single
reactant, one can use the sat keyword. The saturating reactant is provided as the first reactant. The rate

is elementary with respect to all the other reactants that follow. For example, if the reaction rule is:

S(x~0) + A() + B() + C() -> S(x~p) + A() + B() + C() Sat (k,K)

Then the rate of the reaction is calculated as:

k[S]
K+ [S]

r = f(S)x[A][B][C], where f(S) =

The sat is a special case of the Hill rate law, another common approximation used to model cooperative

phenomena [7]. The Hill rate law can be employed in BNGL using the 5i11 keyword.
S(x~0) + A() + B() + C() -> S(x~p) + A() + B() + C() Hill (k,K,n)

The rate is calculated as follows:

k[S]"

r = f(S)x[A][B][C], where f(S) = m

f(S) is a sigmoidal function which exhibits a switch-like behavior, moving from zero to maximum over a
range of [S]. Figure 2 shows how the function f(S) is controlled by the three parameters. The k
parameter controls the maximum value that f(S) tends to at high [S] values. The K parameter controls
the half-saturation point, i.e. the [S] value for which f(S) is half of its maximum value. The n parameter is
also called the Hill coefficient and controls the steepness of the switching behavior. The Hill coefficient

should be a positive number, but does not have to be an integer.

Note that both sat and #i11 rate laws are first-order with respect to the other reactants that follow the

first reactant. sat is a special case of the Hi11 rate law with the Hill coefficient set at n=1.
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5.3.3 Rate Law Approximations vs. Explicit Mechanisms

The advantages of using the sat, MM and Hi11 keywords are that they do not introduce new species into
the network for intermediate complexes. A sequence of kinetic steps is approximated into a single-step
rate law using these approximations. In the traditional framework, such approximations are typically
employed to reduce the size of the network. For enzymatic interactions that are fairly independent, a
significant reduction is achieved and the fast timescale of the enzyme-substrate equilibrium is removed,
which can speed up model simulation. However, using a rate-law approximation such as Michaelis-
Menten carries the risk of modeling error, especially in densely connected catalytic networks such as
signal transduction. For example, if there were two substrates that competed for binding to a single

enzyme, but with identical reaction parameters, i.e.

kf kcat
E+S; 2ES; —SE+P,

Ky

kf kcat
E+S, 2ES, —>E+P,

kr

Then the MM-like formulation for conversion for each substrate can be derived to be:

_ d[sl] _ kcat[E]T[Sl]
dt Ky +[Sq] +[S2]

_ d[Sz] _ kcat[E]T[Sz]
dt Ky + [S1]+S:]

Note how the denominator term for each conversion has both [S;] and [S,] terms. This cannot be
expressed using a conventional Mv keyword. We can get around this by manually deriving the rate
function for such interactions (such as the relations above) and then assigning to the rate “constant” a
custom global function (see Section 6.1). The concentration terms in the function need to be provided

as molecules-observables. For example, one of the relations above can be rephrased as:
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_d[sl] _ ( Keat

T \Kym + [S1]+[S;

dt ]) X[Elrx[S1] = Keunc[ElT[S1]

kfunc can be assigned a global function involving the parameters k.., Ky and a molecules-observable

which returns the sum [S;]+[S,].

Such custom rate laws may be useful for simplifying reaction mechanisms and speeding up simulations,
but they come at a significant price in terms of model clarity and modeler effort to derive or find the
appropriate reduced model. Many reduced mechanisms are mathematically quite complex and may
make the resultant model inaccessible to the average biological researcher. Common situations in signal

transductions that can be modeled using such reduced mechanisms include (17):

multiple competitive substrates with different enzymatic parameters,

inhibitors with one or more mechanisms (competitive, non-competitive, etc.),

combinations of inhibitors and allosteric enhancers of enzymatic activity,

multiple enzymes acting on a common substrate

allosteric inhibition/enhancement caused by substrate or product feedback.

More importantly, the approximations used to derive these reduced mechanisms may not hold in the
context of a large reaction network. For example, the quasi-steady state approximation may not be
appropriate when changes in [ES] are of the same order of magnitude as changes in [S], i.e. when
d[ES]/dt << d[S]/dt is false (17). This may happen in signal transduction networks because the enzyme
and substrate are often of similar concentrations (18). A second example where the MM-approximation
would fail is when the product is already present in significant amount in the system making the ES->E+P
catalytic step a reversible process (17,19). For some enzymes, the catalytic flux may even shift to flow in

the opposite direction, converting product to substrate. Recent studies have shown that the repeated
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invocation of the Michaelis-Menten mechanism can cause a significant loss of model accuracy for dense

biological networks (18,20).

An alternative approach is simply to write out the explicit reaction mechanisms and use no higher-order
approximations except the most basic Law of Mass Action (see Section 5.1). Although more accurate
than the reduced mechanisms, the exact treatment can potentially increase the size of the reaction
network by introducing a large number of intermediary complexes. In the traditional modeling
framework, this approach was unfeasible because every complex had to be identified and labeled

manually. BNGL and other rule-based languages alleviate this problem by providing a structured way to

create large numbers of complexes using relatively few reaction rules.

Although rule-based languages simplify the task of coding large networks, they do not, by themselves,
avoid the computational costs associated with simulating large networks using standard methods for
chemical kinetics. However, theoretical advances in simulation methods for rule-based models (see
Section 5.4) have produced the network-free method, which has computational costs that are
independent of network size (21). Recent attempts at modeling large signal transduction systems have
embraced the elementary reaction perspective (22,23) for its accuracy. For a sufficiently large (or even
infinite) network, instead of trying to compress the reactions using potentially inaccurate rate-law
approximations, it may be better to write down the full reaction mechanisms and use a network-free

simulator (see Section 5.4) to simulate the system.

To illustrate, consider the example of two enzymes E1 and E2, both of which can act on two different
substrates S1 and S2. Assume that every enzyme-substrate pair has unique enzymatic parameters.
Writing down the reaction rules to describe this situation takes a matter of minutes, whereas deriving

the correct rate-law approximation would take much longer, and the computational cost would likely
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not be reduced, especially for ODE-based simulations (see Section 5.4). The system can be explicitly

written out as:

El(s) + Sl(e,x~0) <-> El1(s!0).S1(e!0,x~0) kf1l1l, krll
El(s) + S2(e,x~0) <-> El(s!0).52(e!0,x~0) kf12,krl2
E2(s) + Sl(e,x~0) <-> E2(s!0).S1(e!0,x~0) kf21,kr21l
E2(s) + S2(e,x~0) <-> E2(s!0).52(e!0,x~0) kf22,kr22
E1(s!0).S81(e!0,x~0) -> El(s) + Sl(e,x~p) kcatll
E1(s!0).52(e!0,x~0) -> El(s) + S2(e,x~p) kcatl2
E2(s!0).81(e!0,x~0) -> E2(s) + Sl(e,x~p) kcat21l
E2(s!0).52(e!0,x~0) -> E2(s) + S2(e,x~p) kcat22

5.4 Simulation Methods

Since chemical kinetic theory provides a formal way of defining network dynamics in terms of ordinary
differential equations (ODEs) (such as those used in Section 4.1), the simplest way to simulate a
chemical kinetic model is to initiate the model with certain concentrations of starting species and then
use numerical integration of ODEs to propagate the model through time. The chemical system is
assumed to exist in an isothermal reactor of constant volume with the molecules homogenously
distributed throughout the system and freely diffusing. Also, the notion of the individual molecule does

not exist and the concentration changes in the trajectories are ‘smooth’, continuous and deterministic.

The ODE integration method is fast and works well when the system is well behaved and concentrations
are sufficiently large such that variations are smooth. However, when concentrations are small — on the
order of tens to hundreds of molecules — stochastic noise can play a significant role. For example,
turning a gene off or on can have a drastic effect on the synthesis of the corresponding protein and the
timing of gene-activation may be important in a gene regulation model. The continuum approximation
of the ODE method is not useful in this case, since the behavior is not smooth and the notion of

individual molecules becomes more important. Stochastic noise can introduce dynamic behavior that is
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not observable at the continuous limit, but is critical for the function at hand (e.g. see (24)). Another
example to consider is cell differentiation, where stochastic noise could determine one of many cell

fates from the same starting point. The deterministic ODE method cannot be employed in these cases.

To simulate noisy models or models where stochasticity is important, the simulation should be
performed with Gillespie’s stochastic simulation algorithm (SSA) (25), which provides an exact way of
simulating a set of chemical ODEs in terms of such discrete random events. The SSA updates population
numbers discretely, i.e., based on the firing of a single reaction event at a time. Because of this, the SSA
is also typically much slower than ODE integration. When molecule numbers are high and there are no
drastic events in the model, the discrete noise becomes less noticeable and the SSA trajectories are
closer to the ‘smooth’ limit of ODE trajectories. Section 6.3.2 and Figure 5 provide an example of such a

case.

Both SSA and ODE integration methods suffer from a significant computational limitation. They both
require the entire reaction network to be stored in memory so that the respective populations and
concentrations can be updated. This limits the size of the network that can be simulated (usually about
10" reactions and species). But biological reaction networks are typically dense and some networks can

also be infinitely-sized due to oligomerization (26).

For a certain subset of reaction networks (such as scaffolded interactions and linear cascades),
significant reduction in network size can be achieved by exact model reduction techniques (12, 27, 28),
which can systematically synthesize a compressed set of ODEs from a rule-based model specification
(similar to the approach in Section 4.1 but on a larger scale). This enables exact simulation of the model
for relevant outputs with a reduced number of differential equations. However, some types of
interactions that are common in rule-based models, e.g. cooperativity between binding sites (such as in

Section 6.2.4), preclude exact model reduction. Current model reduction methods are not powerful
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enough to guarantee reduction of large-scale rule-based models, and other simulation techniques are

required to overcome the combinatorial bottleneck.

Another possible solution is to truncate the size of the network arbitrarily, for example, by not allowing
complexes larger than 10 molecules to form. However, the artificially constrained network is not
guaranteed to have the same behavior as the full network. A more accurate approach is to generate
only the portion of the network that is required at a particular time to advance the simulation. This
forms the basis of ‘on-the-fly’ methods (29,30), one of which has been implemented in BioNetGen (30).

However, its performance degrades significantly for networks larger than about a thousand species (21).

The most efficient solution developed so far is to discard generating the network altogether. The
molecules can be treated as particles instead of populations and particle-based stochastic simulation
methods can be applied to them instead of the network-based SSA. This forms the basis of the network-
free simulation methods, with computational and memory requirements that scale with the number of
particles, rather than the network size (26,31). There are a number of network-free reaction kinetics
simulators that have been developed for rule-based modeling. STOCHSIM (32) was the first agent-based
chemical kinetics simulator, but its rule-based language is less expressive than BNGL and Kappa and it
uses a sampling method that becomes inefficient as the range of rate constant values in the model
becomes large (an order of magnitude or more), which is typical for large models. DYNSTOC (33) uses an
extended version of the STOCHSIM algorithm and takes BNGL models as input, but still performs poorly
in comparison to SSA-based simulators. RuleMonkey (34) works on BNGL models and uses a more
efficient simulation algorithm based on the Gillespie’s SSA. Both DYNSTOC and RuleMonkey have been
validated for a broad range of rule-based models (33,34). Network-free simulators are also available for

the Kappa language (31) (see http://kappalanguage.org).
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The most efficient and flexible network-free simulator compatible with BNGL that has been developed
so far is NFsim (21) (see http://nfsim.org). NFsim and BNGL compatibly support global functional rate
laws (such as those discussed in Section 5.3), local functions (which can be used to make rules even
more concise and powerful) and logical Boolean functions. This increased functionality combined with
the efficient particle-based stochastic simulator greatly expands the range of models that can be
developed and simulated. The discussion of local functions is outside the scope of this tutorial and the

reader is referred to Sneddon et al. (21). Defining global functions in BNGL is discussed in Section 6.1.

For models with less than a few hundred species, the simulation with SSA is faster than with NFsim. As
the model size increases, however, the SSA rapidly becomes less efficient, whereas NFsim displays little
or no decrease in performance as model size increases (21). Thus, NFsim allows the modeler to write
any number of reaction rules without worrying if the underlying set of reactions is too large or infinite.
One has to pay attention to the concentrations used, however, since the simulation speed is limited by
the number of particles in the system. NFsim (and other network free simulators such as RuleMonkey
and the Kappa simulator) exactly sample the full chemical master equation for the system. Therefore,
the trajectories produced from these simulators are indistinguishable from and equivalent to those

produced by the SSA.

6 Receptor Ligand Interactions - A BioNetGen Tutorial

In this section, we will walk through the process of constructing, simulating, and analyzing a BNGL
model. We consider the example of the human epidermal growth factor (EGF) ligand binding specifically
to the epidermal growth factor receptor (EGFR, also known as HER1 and ERBB1). This interaction is
important for mammalian cells in most tissue-types and functions as a signal that initiates growth and
proliferation in both healthy and cancerous cells. The model presented here can be used to investigate

how hypothesized interactions affect aggregate distributions of receptors.
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We formulate the model by drawing descriptions of biochemical interactions from the existing
knowledge base in the biomedical literature and representing these as BNG molecules and rules. These
descriptions should not be considered established facts, but rather should be considered hypotheses
about the system structure, which can be tested by comparing model predictions with experimental

observations and data.

The model is written in a normal text file with the extension “.bngl”. The model comprises a series of
text blocks, namely parameters, molecule types, observables, seed species, reaction rules and actions.
The blocks functions and compartments may also be provided in more complex models. All blocks are
constructed as:
begin block-name

[blocktext]

[blocktext]

[blocktext]
end block-name
Any text on a line following a # (hash) symbol is considered a comment and is ignored. If a line becomes
too long, the \ (backslash) symbol can be used to extend a statement to the next line. Subsequent tabs

and spaces are treated as a single whitespace.

6.1 Seeding The Model

Knowledge Base: The ligand EGF monovalently binds the receptor EGFR. The extracellular domain of EGFR
has a binding site for EGF and a domain that mediates dimerization with other receptor molecules (39).
EGFR autophosphorylates at multiple amino acid positions, including Y1068 (tyrosine at position 1068 in the

amino acid sequence of human EGFR) and Y1173 (reviewed in (36)).

Translating this information from the literature, we can construct the molecule types as follows:

L (rec) — Ligand with a receptor binding site
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R(lig,dim, y1068~0~p,y1173~0~p) — Receptor with a ligand binding site, a dimerization domain and

two tyrosines that can be in unphosphorylated or phosphorylated states.

The molecule types are defined in a molecule types block, i.e.

begin molecule types

L(rec)

R(lig,dim,y1068~0~p,y1173~0~p)
end molecule types
We also need to define the starting species and their concentrations for the model. This is provided
using the seed species block. The complete species specifications should be provided. In this case, the
starting species are simply free ligand and monomeric unphosphorylated receptor. It is a good
convention to provide population numbers for the seed species and use microscopic rate constants in
the reaction rules.
begin seed species

R(lig,dim, y1068~0,y1173~0) RO

L(rec) L0
end seed species
RO and L0 are parameters that are to be defined separately in the parameters block. In the parameters
block, a parameter name is assigned a real number or a standard mathematical expression involving
other parameters. For example, R0 can be defined directly as a number and 1.0 can be defined in terms

of concentration converted to population number. The units of the parameters can be given in

comments for clarity:

begin parameters

V_ext 1.6e-9 #liters
N Avo 6.022e23 #molecule number per mole
RO leb #molecule number per cell
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L0 L _conc*V_ext*N_Avo #molecule number
end parameters
Parameters used elsewhere in this tutorial are assumed to have been defined in the parameters block

either with numerical values or as expressions of other parameters.

Finally, we need to define the observables for the model. This model treats receptor aggregation and
phosphorylation. Not only are we interested in the number of dimer species, but also in the number of
receptors in dimers. These can be represented using species-observables and molecules-observables

respectively in the observables block (note the use of wildcards in observables).

begin observables

Molecules BoundLigand L(rec!+)

Molecules BoundReceptor R(lig!+)

Species Dimer R(dim!0) .R(dim!0)

Species UnligatedSpecies R(lig,dim),R(1lig,dim!0) .R(1lig,dim!0)
Species PhosphSpecies R(yl1068~p),R(yl173~p)

end observables

The Molecules/Species keyword indicates the type of observable. This is followed by the name
assigned to the observable and then the list of patterns to match the species summed up in the

observable.

An optional functions block can be used to define global functions of the observables. These functions
can be used to track key variables in the simulation or for modified rate laws in reaction rules (see
Section 5.3). The observables referenced by a global function must be defined in the observables block.
The function itself is defined in the functions block. The observables block must precede the functions

block for the observables to be used in the functions.
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An example function involving the species-observable substratesum would be defined in the functions

block as:

begin functions
k_ func kcat*E_tot/ (KM + SubstrateSum)

end functions

Although it is not used in this particular model, k_func defined here can be used instead of the Sat rate

law in a reaction rule.

6.2 Building the Model

In this section, we create several hypotheses about the receptor aggregation mechanism and then

implement reaction rules based on each hypothesis.

The rules are enclosed in a reaction rules block as:

begin reaction rules
[reaction rule]
[reaction rule]

end reaction rules

6.2.1 Dimer-Dependent Phosphorylation

Knowledge Base: The kinase on EGFR is inactive in monomers and is activated by dimerization (37).

If both phosphorylation sites were represented as identical, (for example, if the molecule type were
R(lig,dim, y~0~p,y~0~p) instead), then we would only need a single rule to represent it. The

dimerization is given as context and the transformation is phosphorylation.

R(dim!0) .R(dim!0, y~0) -> R(dim!0) .R(dim!0, y~p) k ph
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However, we have chosen to model the two phosphorylation sites distinctly. Therefore we would need
two different rules. The kinetics can still be made identical with identical rate constants, or non-identical

with different rate constants.

R(dim!0) .R(dim!0,y1068~0) -> R(dim!0) .R(dim!0,y1068~p) % phl

R(dim!0) .R(dim!0,y1173~0) —> R(dim!0) .R(dim!0,y1173~p) k ph2

Since the only available binding partner on dim component is another dim component (i.e. we are not
writing any reaction rules where dim binds to anything else), we can shorten the context representation

using the + wildcard on the bond.

R(dim!+,y1068~0) -> R(dim!+,y1068~p) k_phil

R(dim!+,y1173~0) -> R(dim!+,y1173~p) k_ph2

Not dephosphorylating the tyrosine sites would result in runaway phosphorylation, which is undesirable.

We can use a uniform first-order background dephosphorylation:

R(yl068~p) -> R(y1068~0) k_deph

R(yl173~p) -> R(yl1173~0) k_deph

This is a valid assumption to make when the phosphatases are highly active and non-specific.

6.2.2 Ligand-Dependent Dimerization

Hypothesis: Ligand binding initiates receptor dimerization.

Expressed as a traditional equilibrium model,

Kin
R+ L&SRL

Kdim
RL + RL < LRRL
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Here, the reactions are represented as bidirectional equilibrium reactions defined by equilibrium
association constants, which are ratios of the forward and reverse rate constants. BNGL requires that

the model be specified in terms of individual rate constants, i.e.

ke K
R+ L =RL, whereKypjnq=—
K, kr

Kra/2 Kea/2
RL+RL = LRRL, whereKgipy =
krd kl‘d

The two bidirectional reactions can be directly translated into bidirectional reaction rules.

R(lig,dim) + L(rec) <-> R(lig!0,dim).L(rec!0) k f,k r
R(lig!+,dim) + R(lig!+,dim) <-> R(lig!+,dim!0).R(lig!+,dim!0) k £ dkrd

Note that the bimolecular association in the second rule is symmetric and in the traditional expression
would require a (1/2) multiplication factor. However, as mentioned earlier, BioNetGen requires the
modeler to use the asymmetric reaction rate constant. On processing the rule, BioNetGen discovers the

symmetry and automatically assigns the multiplication factor.

Knowledge Base: Both singly-ligated and unligated dimers have been discovered to exist (38).

The model as it stands represents the typical manner in which ligand-induced dimerization and
phosphorylation is modeled e.g. in refs. (22,39,40). However this model is deficient because it does not
capture the full nature of the interaction between ligand-binding and dimerization processes. In the
current model hypothesis, the dimer state is inextricably linked to the ligand-bound state, which is not
true in the light of the above evidence. The experimental evidence of existence of singly-ligated and

unligated dimers enables rejecting the current model hypothesis.

6.2.3 Ligand-Independent Dimerization
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To explain the existence of singly-ligated and unligated dimers, we introduce an alternate hypothesis.

Hypothesis: Ligand binding and receptor dimerization are independent of each other.

Expressed as a traditional equilibrium model (with equilibrium association constants),

Kin Kin
RRLL & RRLL <& RLRL

1IKdim IIKdim III<dim

Kin K in
RRLL <X RRLL & LRRL

In terms of reactions:

kg ke
RRLL = RRLL = RLRL
Ky Ky
kg ke
RR,LLL = RRLL = LRRL
Ky Ky
_ ke ke
where Kping = — and Kgim = —
kr krd

Since the dimerization and ligand binding reactions are completely independent of each other in this

model, we can model this system using two context-free rules:

R(lig) + L(rec) <-> R(1lig!0).L(rec!0) k f,k r

R(dim) + R(dim) <-> R(dim!2).R(dim!2) k f d,k r d

Note that by removing context, we have enabled the reaction rule to generate additional reactions. The

dimerization rule in the earlier hypothesis generated only one reaction: RL with RL. Here, it generates

three dimerization reactions: R with R, R with RL and RL with RL.

Knowledge Base: Phosphorylation of receptor increases on ligand addition (reviewed in (36)).
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In this model, we have delinked the dimerization from ligand-binding, i.e. ligand binding does not
influence the equilibrium concentrations of the dimer (and vice versa). Since phosphorylation is dimer-
dependent, this implies that ligand-binding cannot directly influence phosphorylation. The model

behavior is at odds with experimental evidence. Hence this model hypothesis is also rejected.

6.2.4 Cooperative Ligand Binding and Dimerization

Two events are said to exhibit cooperativity if the sequence of occurrence of those two events affects
the intrinsic rates at which they occur. One plausible model for dimer formation posits that the

monomer, unligated dimer and singly-ligated dimer all have different affinities for the ligand (41).

Hypothesis: Ligand binding and receptor dimerization are mutually cooperative.

Expressing this as a traditional equilibrium model (with equilibrium association constants),

K ind, K ind,
RRLL e RRLL <% RLRL
IIKdim,l 1IKdim,Z 1IKdim,3
Kbind,2 Kbind,3

RR L L RRL, L — LRRL

Cooperativity imposes thermodynamic constraints on the model. If there is no external energy source or
sink, a system of reversible reactions should obey mass and energy conservation. If there are multiple
paths from the same set of reactants to the same set of products, then the product of the equilibrium
constants along all paths should be identical. In other words, the product of equilibrium constants over a
closed loop of reversible reactions should be unity. This effect is called detailed balance and places
constraints on the parameters and rules used to model the system (e.g. in (39)). In this case, there are at

least two closed loops, resulting in the following constraints:

Kpind,1Kdim,2 = Kbpind,2Kdim,1

Kpind,3Kdim,2 = Kpind,1Kdim,3
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To simplify parameters, we describe the three ligand binding equilibrium constants using multiplicative

factors o and B on the monomer ligand binding equilibrium constant Ky;ng, i.€.

Kpind,1 = Kbind
Kping,2 = ®Kpind,1

Kbind,3 = BKbind,1

Using these relations and the constraints obtained previously, we can describe the dimerization

equilibrium constants as multiplicative factors on the unligated dimerization equilibrium constant Kg;n:

Kdim,l = Kdim
Kdim,2 = aKgim

Kdim,3 = O(BKdim

The network can be rewritten as:

Kbind Kbind
RRLL R,RL,L — RL, RL
IIKdim IIO(Kdim IIO(BKdim
aKpind BKbind

RR,LL & RRL, L — LRRL

Note that BioNetGen requires reaction rate constants, whereas here we have only managed to obtain
multiplicative factors for the equilibrium constants. We do not know how the factor distributes between

the forward reaction and the reverse reaction and must make assumptions about it.

A general way of resolving this issue would be to distribute the multiplicative factors in the following

manner (42):
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k. = a® 1k,

0<¢p<1

Now, by changing ¢, we can control the distribution of the multiplicative factor over the forward and
reverse reaction rate constants in the most general way. There is no single best value for ¢. In this
tutorial, we use $=0, causing the multiplicative factor to affect only the reverse rate and not the forward

rate, i.e.

ke = k¢

— r
ki =a k., =—
cx

Rewriting the equilibrium model in terms of reactions and implementing the multiplicative factors (for

the equilibrium constants) as divisive factors on the reverse rate:

ke kg
R,R,L, L = R,RL,L = RL,RL
Ky Ky
KeadTkrg keadl keq/a keadl keq/a B
ke ke
RR,L,L = RRL, L = LRRL
k./a k./B
_ ke ke
where Kping = — and Kgim = —
kr krd

These reactions are now consistent with detailed-balance. Depending on the values chosen for o. and 3,

one can cause the system to exhibit multiple cooperative behaviors.

Knowledge Base: Dimerization is enhanced by ligand-binding. However, the two ligand-binding sites on the

dimer are negatively cooperative (43).
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If the unligated dimer has a higher affinity for ligand than the monomer, the presence of ligand shifts
the dimer-monomer equilibrium towards the dimer, which also increases receptor phosphorylation. In
this model ligand binding cooperates positively with dimer formation leading to an increase in
dimerization when ligand is added. Another feature of this system, however, appears to be that once
one receptor in a dimer binds ligand, the second receptor exhibits a considerably reduced affinity for
ligand (41). In other words, ligand binding is negatively cooperative on the dimer. Structural evidence

strongly supporting negative cooperativity has emerged recently (44).

Based on the equilibrium constants determined from experiment ((43), Fig 3), we use the values o = 120
and 3 = 0.07. These values are consistent with our previous discussion that ligand binding enhances
dimerization (Kgim 2=120Kgim 1 and Kgim 3=8.4Kgim 1) whereas the ligand binding to the dimer is negatively

cooperative (Kping,3=0.07Kping 2)

Modeling this scenario requires more reaction rules than the previous model. This is a characteristic
feature of rule-based modeling. Independent processes, lacking reaction context, are the easiest to
express with the fewest number of rules. Unidirectional influences, in which one process affects the rate
of another but not vice versa, require additional context. Bidirectional influences, in which two
processes mutually affect their rates giving rise to cooperativity, represent the most complex linkage
between two components. Care must be taken in modeling such interactions to ensure that detailed

balance is obeyed.

For the current hypothesis, we can write the rules as follows:

# Ligand association

R(lig)+L(rec) -> R(lig!l).L(rec!l) k £

# Ligand dissociation for monomer, singly-ligated dimer and doubly-ligated dimer

R(dim,1lig!l) .L(rec!l) -> R(dim,lig)+L(rec) kr
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R(dim!2,1ig) .R(dim!2,1ig!1l) .L(rec!l) -> \

R(dim!2,1ig) .R(dim!2,1iq) + L(rec) k_r/alpha
R(dim!2,1lig!+) .R(dim!2,1ig!l) .L(rec!l) -> \
R(dim!2,1lig!+) .R(dim!2,1igqg) + L(rec) k_r/beta

# Dimer association

R(dim) + R(dim) -> R(dim!l).R(dim!1) k £ d

#Dimer dissociation for unligated/singly-ligated/doubly-ligated dimers

R(lig,dim!1l) .R(lig,dim!1) -> R(lig,dim) + R(lig,dim) k r d
R(lig!+,dim!1l) .R(lig,dim!1) -> R(lig!+,dim) + R(lig,dim) k_r_d/alpha
R(lig!+,dim!1l) .R(lig!+,dim!1l) -> R(lig!+,dim) + R(lig!+,dim) k_r_d/(alpha*beta)

This model of receptor aggregation corresponds closely with the experimental and structural evidence.

Hence we accept these rules and proceed to simulate the model. The choice of rate parameters is

discussed in general in Section 8.

6.3 Simulating the model

The molecule types, parameters, seed species and reaction rules constitute the model. Various actions
can then be performed on the model using the actions block. Actions are pre-existing BNGL routines
that can be called at will by the modeler. Typically, actions require action-parameters and flags and
should be terminated with the semicolon symbol.
begin actions

[action];

[action];

end actions

6.3.1 Network Generation
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The network generation action starts with the seed species and iteratively applies the reaction rules to
the species set to generate new reactions and species. This can proceed till the network size stops
increasing, in which the case the whole network has been generated. Or, the size of the network can be
arbitrarily limited by limiting the number of iterations (using max_iter flag) or the maximum number of
molecules (using max_stoich) in a complex. The network is printed out in a text file with “.net”

extension. The name of the .bngl file is used as the base name for the .net file.

The different species are assigned numbers by default to compactly represent the reactions, but the full
configuration can also be written out instead using a TextReaction flag. The overwrite flagis used to
indicate whether to overwrite a pre-existing file of the same name. A typical generate network

command would look like this:

generate network ({overwrite=>1,max stoich=>{“R”,”2”},max iter=>20, TextReaction=>1});

In this statement, the generate network routine is called which generates the reaction network subject
to the condition that the maximum number of receptor molecules is 2 in any complex and that the rules
are iteratively applied at most 20 times. When the network is being written in the .net file, the routine is
allowed to overwrite existing files of the same name and is told to write down the full species

specifications in the reactions.

For the purposes of this model, we could simply use:

generate network ({overwrite=>1, TextReaction=>1});

For large networks, it is advisable to generate the network only once using the generate network
command and then for subsequent simulation reuse the network using the readrile action or by giving
the .net file name as a parameter in other actions (see online documentation at http://bionetgen.org for

more detail).
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6.3.2 Equilibration & Perturbation

In any experiment, a ground state is perturbed in some defined fashion and then the ground state and
perturbed states are compared using some measurable quantity. In biological systems, the ground state
is typically a pre-existing equilibrated control state and the perturbation is typically the addition of some
chemical species or activation of some reaction. Then after a defined time or at many time-points, the

two states are compared using some experimental probe.

When simulating a biological model, it is important to follow the same principle. To establish the ground
state of the experiment, the model is seeded with everything except the perturbing agent and simulated
until equilibrium or steady state is achieved. This step is called the equilibration step. A ‘good’ model,
i.e. one which closely corresponds to reality, is one where all transformations are complementary and in
the absence of a perturbing agent, the system equilibrates. Following equilibration, the perturbing agent
is added to the system and subsequent simulation is called perturbation, or plainly simulation (which

can be misleading).

For the receptor aggregation model, the ground state involves receptor association and dissociation in
the absence of ligand and the perturbed state involves addition of ligand and monitoring the
aggregation. The monomeric receptors that seed the model would necessarily be far away from
equilibrium. Using actions we can set the ligand concentration to zero and then use numerical ODE

integration to equilibrate the model.

simulate ode ({suffix=>ode,t start=>0,t end=>200,n steps=>100});

“ on

The suffix option is used to append the and then “ode” to the base name, which is taken from the

name of the .bngl file. t start and t_end indicate the total time over which the model is equilibrated

and n_steps indicates the number of time-points at which concentrations are recorded.
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Following equilibration, we wish to add ligand and perturb the model. To do this, first we need to save
the concentrations from the equilibration step and then add new ligand. This is accomplished using:

saveConcentrations () ;

setConcentration("L(rec)","LO temp");

The continue flag can be used to turn concatenate a new simulation with the earlier one. One must
make sure that the t_start of the new simulation is the same as the t_end of the earlier simulation and

that the suffix value is not changed. Any number of simulations can be so concatenated.

simulate ode ({suffix=>ode,continue=>1,t start=>200,t end=>500,n steps=>100});

Invocation of the SSA simulator follows the same syntax, but the simulate ssa command is used
instead. For the SSA and ODE simulations, the entire network is generated (and saved in the .net file)
and the trajectories (concentration vs. time) of all species are recorded in the .cdat text file. The
trajectories of the observables (which are weighted sums of specific species) are recorded in the .gdat
text file. The NFsim method does not generate the network and therefore writes only a .gdat file. Since
multiple simulations can be concatenated in a single actions block, use of appropriate suffixes is

encouraged to distinguish between data files.

If the continue flag was set to 1 and the suffix was not changed, then the trajectory of the simulation is
concatenated with the previous simulation. For a single sequence of concatenated simulations, a single
.cdat file and a single .gdat file are generated. If the continue flag was set to 0 (which is the default
value) or if the suffix used for the simulation step is changed, then each simulation output is written to a

separate set of data files.

To simulate the same perturbation using SSA, we would need to reset the species concentrations to the
equilibrated state. This is performed by the resetconcentrations () method which changes all the

species concentrations to what they were during the last saveconcentrations () call. Following the
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reset, ligand is introduced using the setConcentration () method and SSA is used to simulate the

model.

NFsim can be invoked using the simulate nf command, provided the binary for NFsim exists in the bin
subfolder of the BioNetGen installation. The actions that can be used in the actions block and their

respective syntax are posted with the documentation on the BioNetGen website (http://bionetgen.org).

6.3.3 Execution

The actions block is used to list the sequence of commands that the modeler wishes to implement when
BioNetGen executes the model. The modeler should save the complete model as a .bngl file (say
model.bngl), open a terminal or command prompt and enter the directory in which the BNGL file

resides. Then the following command should be issued:

perl /../BioNetGen/Perl2/BNG2.pl model.bngl

where /.../ is a placeholder for the path to the parent folder where BioNetGen is installed. The slash
convention used (backslash, forward slash) might differ depending on the terminal used. For example,

on a Windows command prompt, the command would look like:

perl “C:\BioNetGen\Perl2\BNG2.pl” model.bngl

On a Unix terminal such as bash (found in OS X and Linux), the command would look like:

perl /Users/username/BioNetGen/Perl2/BNG2.pl model.bngl

Perl is required to run BioNetGen and might need to be separately installed on certain platforms. The
command can also be embedded in terminal scripts and other scripting environments such as R, Octave,

MatLab or Mathematica.

On execution, BioNetGen reads the BNGL file and sequentially implements the actions in the actions

block. Files written by the actions (say, network generation or simulation) are saved in the same folder.
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6.3.4 Analysis

The simulation data are in table format in the .cdat and .gdat text files. They can be easily imported into
different software for statistical analysis and visualization, including (but not limited to) spreadsheet
software (Microsoft Excel, OpenOffice Calc), plotting programs (Gnuplot, Grace) or interactive
computing environments (Matlab, Octave, R, Mathematica). The models themselves can be exported to
the SBML language using writeSBML action, as a Matlab function file using writeMfile action or as a
Matlab Mex file using the writeMexfile action. The M-file uses Matlab’s inbuilt ODE15 simulation
engine whereas the Mex file is a compiled ODE model that utilizes the faster CVODE libraries used in
BioNetGen. The Mex file can be used to run computationally intensive parameter scans and analysis in

Matlab.

RuleBender, the integrated development environment for BioNetGen (see Section 2), also provides
facilities for plotting and analyzing simulation output. In addition, it provides several different global

views on models including contact maps and influence diagrams (see http://rulebender.org).

The trajectories for both ODE and SSA simulations of the same model are shown in Figure 3. The model
file used for the simulation is shown in Figure 4. Note how the ODE simulations are smooth, but the SSA
simulations exhibit some noise. Because the model involves large populations, the SSA trajectories

closely resemble the ODE trajectories.

Since BNGL models are merely text files, scripts written in scripting languages (such as Python or Perl) or
scripting environments (such as Matlab) may be used to read, modify and simulate BNGL models from
the outside. This flexibility enables BNGL models to be processed for advanced model analysis, including
fitting models to experimental data, scanning numerical ranges for parameters, checking local and

global parameter sensitivity, using BNGL models as modules in a hierarchical framework, etc.

7 Compartmental Modeling
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The default assumption in BioNetGen is a reactor of unit volume. For modeling reactions in multiple
volumes, the user can manually model the location as a separate component state and provide it as
context for each reaction rule. The user would also need to include the correct volume-scaling factor for
each reaction rule, however, and this quickly gets tedious as the number of compartments increases,
especially for reaction rules that perform the same transformation in different compartments. For

detailed modeling with multiple compartments, a more sophisticated approach is required.

The compartmental extension to BioNetGen (cBNG) seeks to alleviate these issues by accommodating
within its language: a compartmental hierarchy, a compartment attribute to molecules and species, an
automatic detection of possible inter-compartmental transport reactions, and an automatic scaling of
reaction rules based on the locations of the reactants. cBNG was introduced and discussed in detail by
Harris et al.(2009) (45). In this section, we provide the technical concepts underlying compartmental

modeling in cBNG and explain them using appropriate examples.

7.1 Compartment Topology

There are two types of compartments in cBNG: three-dimensional “volumes” and two-dimensional
“surfaces.” cBNGL supports a hierarchical topology that mimics that of the cell. Every volume can
enclose one or more surfaces, whereas every surface has to enclose exactly one volume. The enclosing
compartment is referred to as the parent and the enclosed compartments are referred to as children. A
compartment is considered adjacent to its parent and children. Volumes cannot enclose volumes and

surfaces cannot enclose surfaces.

The parent volume that encloses a surface and the child volume enclosed by the same surface are
referred to as bridged-volumes and the intermediary surface is referred to as the bridging surface.
Similarly the parent surface that encloses a volume and any child surface enclosed by the same volume

are referred to as bridged-surfaces and the intermediary volume is referred to as the bridging volume.
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The compartments block is used to encode the compartment hierarchy and compartment volumes. It is

an optional block that triggers the use of cBNGL framework and syntax. Consider the hierarchy

described in Figure 5. This can be encoded in a compartments block as follows:

begin compartments

Ext 3 V_ext

Plm 2 V_plm Ext
Cyt 3 V_cyt Plm
Enm 2 V_enm Cyt
Num 2 V_num Cyt
End 3 V_end Enm
Nuc 3 V_nuc Num

end compartments

External milieu

Plasma Membrane, enclosed by Ext
Cytosol, enclosed by Plm

Endosomal Membrane, enclosed by Cyt
Nuclear Membrane, enclosed by Cyt
Endosome, enclosed by Enm

Nucleus, enclosed by Num

Each line indicates the name of the compartment, the dimension (2D or 3D), the volume of the

compartment and the name of the parent compartment. A short description can be given as a comment

for clarity.

7.2 Molecule Location

Molecule location is given by a postfix with the @ symbol in both patterns and species. For example, to

represent a monomeric receptor present in the plasma membrane compartment (p1m), we use:

R(dim) @P1m

In patterns and species with multiple molecules, every molecule’s location can be indicated by an @

postfix. For example, to represent a dimer of receptors present in the plasma membrane, we use:

R(dim!0)@PIm.R(dim!0)@P1lm
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Molecules can form bonds with molecules in the same compartments or in adjacent compartments.
Thus a single species can span multiple compartments. For example, to represent a receptor on the

plasma membrane that binds a ligand outside the cell, we use:

R(lig!0)@Plm.L(rec!0) RExt

A topologically consistent species does not span more than one surface and does not have bonds that

need to pass through compartments. Examples are shown in Figure 6.

If cBNG is invoked using the compartments block, then the seed-species block should contain
topologically consistent species with their full compartmental specification, for example,
begin seed species

R(lig,dim) @P1m RO

L(rec)@Ext L0

end seed species

7.3 Location in Patterns

cBNG provides a lot of flexibility in tailoring patterns to match species based on the location of their

molecules.

The aggregate location of a species can be inferred from the location of its molecules:

e If all the molecules in a species are in a volume compartment, then their aggregate location is that
volume compartment.

e If all the molecules in a species are in a surface compartment, then their aggregate location is that
surface compartment.

e If the species spans one surface and one or two volumes, then the aggregate location is that

surface compartment.
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Species can be referred to by their aggregate location using an @ prefix on a pattern. For example,

consider the dimer pattern (on the plasma-membrane), R(dim!0)@PIm.R(dim!0)@P1lm
The same pattern can be referred to using the aggregate location as @P1m:R(dim!0) .R(dim!0)

For species that bridge compartments, the aggregate location (the surface) can still be provided as @
prefix whereas the connected molecules in the adjacent compartments can be tagged with the @

postfix as exceptions to the rule.

For example, consider the receptor dimer on the plasma membrane connected to a single ligand

molecule in the external compartment: R(dim!0,1ig!1)@PIm.L(rec!1)@Ext.R(dim!0)@P1Im.

The aggregate location is the pim surface. To match this species using a pattern, we can use the @pim

prefix and provide the Ext locations as postfix (underlined for emphasis), i.e.

@PIm:R(dim!0,1lig!1l) .R(dim!0) .L(rec!l) @Ext

Volume molecules bound to a surface can be matched by prefix location tags of the aggregate location.

For example, consider the species: R(dim,1ig!1)@Plm.L(rec!0)@Ext
The aggregate location of the species is P1m.
It can be matched by both patterns: L(rec!+)@Ext and @P1m:L (rec!+)

The matched region is underlined for emphasis.

7.4 Reaction Rules in the Compartmental Framework
7.4.1 Automatic Volume Scaling

If cBNG is not invoked, i.e. if the compartments block is not used, the modeler must manually provide

the volume factor and Avogadro number factor for the microscopic reaction rate constant, for example:

A(b) + B(a) -> A(b!0).B(a) k/ (N_Avo*V cyt)
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If cBNG is invoked, i.e. the compartments and volumes are specified in the compartments block, then
the volume scaling is part of the cBNG processing and the modeler need only provide the Avogadro

number factor. For example, the same reaction rule would be modeled in the cBNG framework as:

A(b) + B(a) -> A(b!0).B(a) k/N_Avo

cBNG would automatically scale it to k/ (N_aAvo*v_cyt) if it detects that the bimolecular reaction can
occur in the cytoplasm and v_cyt is specified as the volume of the cytoplasmic compartment in the

compartments block.

In accordance with the explanation given in Section 5.1, unimolecular reactions are never scaled by
volume, either in surfaces or volumes. Bimolecular reactions in “volumes” and “surfaces” are
automatically scaled by the respective compartmental volume. Molecules in surfaces are assumed to be
restricted to a small volume enveloping the surface (i.e. the surface volume is equal to the surface area
multiplied by a surface thickness) provided by the modeler. It is not recommended to model reaction

orders higher than bimolecular in the compartmental framework.

7.4.2 Universal Reaction Rules

Biological reactions can happen between reactants as long as they are in the same or adjacent
compartments. Often, the identity of the compartments could be irrelevant to the rate constant (except
for the volume scaling factor). For example, multiple cell types can produce different numbers of the
same receptor on their plasma membranes, but these receptors bind with the same intrinsic affinity to
an external ligand. Such universal phenomena can be written as universal reaction rules, i.e. without any

compartmental context.

On processing a universal reaction rule, cBNG can identify the compartments in which the reactants can

occur. Then, cBNG automatically generates reactions matching the reaction rule, but applicable to the
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specific compartments (or pairs of adjacent compartments) where the reactants are in proximity. For
bimolecular and higher reactions, cBNG automatically scales the reaction rate by the appropriate

volume.

For example, receptor dimerization can occur on both plasma membranes (p1m) and endosomal

membranes (Enm). This can be represented by a universal rule:

R(dim) + R(dim) -> R(dim!0) .R(dim!0) k

This rule would generate dimerization reactions in both p1m and Enm compartments

R(dim) @P1lm + R(dim)@PIlm -> R(dim!0)@PIm.R(dim!0)@RP1lm k/V_Plm
R(dim) @Enm + R(dim)@Enm -> R(dim!0)Q@Enm.R(dim!0)QREnm k/V_Enm
If a specific reacting pair occurs only in one location (or one pair of adjacent locations), then it is

sufficient to use a universal rule to model the reaction.

7.4.3 Scope Restricted Reaction Rules

Scope restricted reactions are reactions whose behavior the modeler wishes to restrict depending on
where the location of the reaction is. For example, the same reactions can occur in three different
compartments, but the modeler might wish to assign different microscopic rates for the reaction in two

compartments and disallow the reaction in the third.

Universal rules cannot be employed for these purposes. In cBNGL, by using the @ symbol, modelers
have the power to specify exactly where a particular reaction occurs. For example, suppose receptors
were degraded at two different rates depending on the location, i.e. rapidly in endosomes, but only very
slowly in the plasma membrane, then we can use scope-restricted rules to show this:

R()@End -> 0 k degr fast DeleteMolecules

R()@P1lm -> 0 k degr slow DeleteMolecules
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Appropriate volume-scaling is done for bimolecular and higher order reactions.

7.4.4 Transport Rules

The cBNGL specification allows molecules and species to be moved between compartments in a number

of ways as long as the resulting species is topologically consistent. If a transport reaction generated by a

transport rule creates a topologically inconsistent species, BioNetGen will detect it and discard the

reaction.

Molecules can be moved individually from their location to any adjacent compartment (volume to
surface or surface to volume) simply by changing the @-postfix. For example, moving a hypothetical A

molecule from the plasma membrane to the child compartment cytoplasm:

A(x)@Plm -> A(x)@QCyt

This is adjacent-compartment molecular transport.

Moving a molecule between adjacent compartments does not affect the postfix location tag of other
molecules in the same species. For example, if a B molecule were connected to A, then it would stay in

p1m. The above rule would generate the reaction (with transported molecule underlined for emphasis):

A(x,b!0)@P1lm.B(a!0)@P1lm -> A(x,b!0)@Cyt.B(a!0)@Plm k

An example where such a transport rule would be useful is to model membrane insertion of proteins,
i.e. when a protein freely diffusing in the cytoplasm is transported to a membrane compartment.

Adjacent-compartment molecular transport cannot be extended to species transport by using the @-

prefix instead of the post-fix.

Individual molecules can be moved from one volume to another volume through a bridging surface. For
example, they can be moved between the cytoplasm and the nucleus, which are bridged by the nuclear

membrane. This is bridged-volume molecular transport.
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A(x)@Cyt -> A(x)@Nuc k

An example where such a transport mechanism would be useful is transport through a channel in the
surface, such as the flow of chloride ions from the external volume to the cytoplasm through a chloride

channel in the membrane.

Bridged-volume molecular transport has the potential to create topologically inconsistent complexes.
Such reactions, if they could be generated from the reaction rules, will be automatically discarded.

Unlike adjacent-compartment transport, bridged-volume molecular transport can be extended to

bridged-volume species transport by using the @-prefix instead of the post-fix. This would simply move

the entire species matched by the pattern as long as it is fully contained in the bridged-volume.

For example, consider the rule:

@Cyt:A(x) -> @Nuc:A(x) k

When this rule is applied to the ecyt:a(x,b!0) .B(a!0) species, the following reaction is generated:

A(x,b!0)@Cyt.B(a!0)@Cyt -> A(x,b!0)@Nuc.B(a!0)@Nuc k

As one can see, the location tags of all molecules in the species have been converted from cyt to Nuc.

The reaction mechanism does not have to be unimolecular, for example, a valid bridged-volume

transport rule would be:

@Cyt:A(x)+B() @Num -> @Nuc:A(x) + B()@Num k

Here, a molecule B () on the bridging surface Nnum enables the transport of some species matching a (x)
between the bridged volumes cyt and Nuc. The rate constant k is bimolecular rate constant scaled only

by the Avogadro number.
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An example where a bridged-volume transport mechanism could be useful is when target proteins bind
transport proteins and the resulting complex is compact enough to penetrate the pores on the nuclear
membrane. Bimolecular mechanisms are useful to model a situation where the rate of transport

depends on number of pores or channels present.

A slightly more complicated form of bridged-volume transport is when a “fixed” molecule is on a surface
and is connected to a “transporting” molecule in a volume. Now when the transporting molecule is
moved across the surface, it carries over any molecules (or “cargo”) that are connected to it in the

volume. To describe this transport mechanism, we use the MoveConnected keyword.

For example, if the fixed molecule was R on the nuclear membrane and the transporting molecule was T
and cargo molecules were A and B, one can imagine a situation where T is connected to R and is able to

move between cytoplasm and nucleus. This can be described with the reaction rule:

T(r!0)@Cyt.R(t!0)@Num -> T(r!+)@Nuc.R(t!0)@Num k MoveConnected

The MoveConnected keyword would ensure that any molecules connected to T (and any molecules
connected to those molecules and so on) would be moved too, i.e. it would generate the following

reactions:

A(t!l)@Cyt.T(car!l,r!0)Q@Cyt.R(t!0)@Num -> A(t!1l)@Nuc.T(car!l,r!0)@Nuc.R(t!0)@Num k

B(t!l)@Cyt.T(car!l,r!0)@Cyt.R(t!0)@Num -> B(t!1l)@Nuc.T(car!l,r!0)@Nuc.R(t!0)@Num k

This is bridged-volume connected transport. In the absence of MoveConnected option, the A and B
molecules would retain their cyt tags creating a topologically inconsistent complex. BioNetGen would

then discard the reaction.

This mechanism is useful to model situations where the transported molecule forms relatively stable

associations with the pore that is necessary for the transport process. For example glucose transporters
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need to form stable complexes with the glucose molecules before they can be moved across a

membrane.

The final form of transport is bridged-surface connected transport. In BioNetGen, this is implemented in

a manner consistent with endocytosis. Compartments cannot be dynamically created in BioNetGen;
hence endocytosis is modeled as movement between pre-existing surface compartments plasma
membrane and endosomal membrane bridged by the cytoplasm. When implementing a transport

between surfaces bridged by a volume compartment, cBNG does the following:

e The molecules in the rule on the starting surface are moved to the destination surface.

e The connected molecules directly on the starting surface are moved to the destination surface.

e The connected molecules in the bridging volume stay in the bridging volume.
e The connected molecules in the outer volume are moved to the inner volume and vice versa.

Consider the bridged-surface transport rule from plasma membrane to endosomal membrane:

R()Q@PIm -> R@Enm k

Using the hierarchy of compartments in Figure 5, cBNG interprets the rule to mean:

p1m — starting surface

Enm — destination surface

Ext —outer volume (parent of p1im)

cyt — bridging volume (child of P1m and parent of Enm)

End — inner volume (child of Enm)

Let us see how the rule affects the following species that spans the plasma membrane, i.e. it has

molecules in external compartment, plasma membrane and cytoplasm:

A(r!0)@Ext.R(a!0,b!1)@PIm.B(r!0)@QCyt
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Molecules in P1m (starting surface) are moved to Enm (destination surface).
Molecules in Ext (outer volume) are moved to End (inner volume).

Molecules in cyt (bridging volume) remain in cyt.

In other words, the above species would be converted to:
A(r!0)@End.R(a!0,b!1)Q@Enm.B(r!0)@Cyt

The different forms of allowed transport mechanisms are described in Figure 7.

8 Biological Parameterization

One of the problems with modeling detailed biochemistry is the combinatorially large requirement of
rate parameters. Rule-based modeling alleviates this requirement to a large extent by assigning identical
parameters to reactions modeled by a single rule. However, the number of rules themselves can still be
significant in number. Where possible, these parameters are obtained either directly or estimated from

experiments detailed in the biochemical literature.

Should the literature prove insufficient, certain limited assumptions can be made about parameters

using general biophysical and biochemical knowledge. These assumptions can also be tested for their
impact on a model using parameter sensitivity analysis methods (46). In this section, we demonstrate
approaches to estimate, calculate and represent important parameters of signal transduction models
such as cell geometry, concentrations, reaction rate constants and equilibrium constants. This section
can be skipped by the experienced modeler familiar with biological parameters and their relevance to

reaction-kinetic modeling.

8.1 Volumes

As mentioned in the Section 5.1, the volume of the compartment in which a reaction occurs directly

affects the microscopic reaction rate constant. Therefore, before modeling a system, one must specify
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the volumes of the compartments in which the reactions occur. Consider an example parameterization

used for the model in the Section 6.

We are studying the effects of an external growth factor on a eukaryotic cell line. For modeling
purposes, we assume a single cell of volume Vg suspended in a liquid milieu of volume V. For Chinese
Hamster Ovary cells, an experiment determining the cell size distribution (47) indicates that the mean
cell volume (V) is 1.2 picoliters (pL) and that the cell suspension has a cell density of 6.15x10° cells/ml.
Inverting this value, we can estimate V., as 1.6 nanoliters (nL). The cell is assumed to be divided into the
cytosol and nucleus in a 5:1 ratio (from (48) similar to assumptions in (49)). This enables us to calculate

the compartment volumes V. as 1 pL and V,c as 0.2 pL.

Secondly, we wish to model reactions on the cell membrane, which can be assumed to be a flat sheet
containing freely diffusing molecules. These surface interactions are scaled by the two-dimensional
surface area rather than the three-dimensional volume. To arrive at these values, we can assume that

the cell is a sphere.

Volume Vegy = 1.2 pL = 1.2 x1072 L = 1.2 X107 m?3

W[

= Radiusr = (Vceu ) = 6.6X10"°m = 6.6 um
41/3

= Surface Area Sy em = 4mr?2 = 5.5x1071%m? = 5.5x10"8dm?

To calculate a surface “volume”, one can approximate membrane thickness h, say 10 nm (or 107 dm),

encompassing the membrane and all the proteins attached to the membrane on either side.

h=10nm =10X10"°m = 10"’dm

= Membrane Volume Vyem = Smemh = 5.5%X1071°dm?3 = 5.5x1071°L = 5.5 fL
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Although they are two-dimensional interactions, surface reaction parameters are often approximated
from their solution-phase values, which are reported in three-dimensional units (i.e. on a per-volume
basis). The membrane thickness approximation is useful to interconvert the two-dimensional and three-
dimensional units. Note that the units used for each of the parameters have to be consistent and inter-
convertible. We considered membrane thickness in dm and surface area in dm? By simply multiplying

these values, we directly get the volume in dm?, which is equivalent to liters.

The ratio of V¢,: to Vinem (here approximately 182) is an important consideration when modeling
membrane reactions, because it provides a measure of the acceleration of membrane reactions versus
cytosolic reactions (13). This acceleration is purely a concentration effect, which arises from membrane
reactions being restricted to a small volume enveloping the membrane, whereas cytosolic reactions are

distributed throughout the large cytosolic volume.

8.2 Concentrations

Understanding the relationship between concentration and population number is of paramount
importance in signal transduction models. A realistic model is one where the concentrations of the
molecules and complexes stay within the biologically acceptable ranges. These ranges can be quite wide
or narrow, depending on the type of molecule. Even within a biological context, concentrations of
specific molecular species can change dramatically during signaling, often over an order of magnitude.
To ensure biological relevance, the modeler must provide starting concentrations that reflect the

acceptable concentration ranges.

Concentration is traditionally defined as the number of moles of a molecule (or complex) per unit

volume of the container (expressed in liters). A mole equals 6.02214 x 10%* individual entities.
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Concentration (M) C =
I\IAvoV

where N is number of entities (no unit)
Navois Avogadro number = 6.02214x10%3 mol~?!

V is volume (L)

To provide a sense of scale, one can keep in mind that in a volume of 1 picoliter (pL),
1 nM concentration equals 602 molecules, but

1 uM equals 602,214 molecules.

Similarly, for the same number of molecules, the concentration can be large or small depending on the
volume of the compartment. For example 10* molecules per cell is
16.6 nM in the cytosol of volume 1 pL, but

3.02 uM in the membrane compartment of volume 5.5 fL

Depending on the biology being modeled, different molecule types in the model can have drastically
different concentration ranges. A global protein profiling study of yeast cells (50) shows a log-normal
distribution with some proteins being as few as 50 molecules per cell and some as high as a million per
cell. Most proteins are found at levels of many hundreds to a few thousands of molecules per cell.
Eukaryotic cells are typically larger than yeast cells, but they also exhibit high variability in size and

shape.

Typical concentration/population ranges for signal transduction models (from low to high) include:

1-10 molecules Genes
10-100 molecules MRNA transcripts
nM concentrations Typical signal transduction proteins
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UM concentrations Typical secreted molecules

mM concentrations Free triphosphate nucleotides (ATP and GTP), Ca**

Another effect of extremely small volumes (or extremely high concentrations) is molecular crowding.
This can cause a breakdown of the well-mixed infinite dilution assumption, especially for bulky proteins.
Crowding tends to reduce reaction probabilities and increase spatial heterogeneity, because the
reaction probability becomes more dependent on local conditions. Crowding can also affect
assumptions made about other parameters such as rate constants and equilibrium constants. The
problem of identifying crowding effects in kinetic models is an active research area (51,52). For a BNGL
model, the modeler should be aware of the caveat that significant crowding can affect the rate
constants that apply inside cells in comparison to those that are measured using purified proteins or cell

extracts.

8.3 Equilibrium Constants

Consider a typical reversible bimolecular reaction. The ratio of the forward and reverse rate constants is
referred to as the equilibrium association constant K, and the reciprocal is referred to as the

equilibrium dissociation constant Kg.

ke
A+ B=AB
Ky
1 k¢
K,=—=—
2 Kd kr

At equilibrium, the flux in both directions is equal.

kf[A] eq [B] eq — Ky [AB] eq

—K _i_ﬁ_ [AB]eq
2 Kd kr [A] eq [B] eq
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Thus the equilibrium constant is the ratio of the concentration of products and reactants at equilibrium.
Suppose at equilibrium, bound and unbound concentrations of reactant A are equal (i.e. half of A is

bound and half of A is free). This would restrict the value of unbound concentration of reactant B.

[A]eq = [AB]eq =Kq = [B]eq

Similarly,

[B]eq = [AB]eq = Kq = [A]eq

Thus the dissociation equilibrium constant is also the concentration of one reactant for which the other
reactant is half-bound at equilibrium. The dissociation equilibrium constant is also that concentration

near which the changes in concentration of the bound complex are largest.

Because of the above relations, the equilibrium constant (in either definition) is a powerful way to
quantify the strength of a reversible association. The dissociation equilibrium constant has units of
concentration and is often referred to as the binding affinity. The lower the value of Ky, the higher the
strength of the interaction. Reversible protein-protein and protein-small molecule interactions have very

wide ranges of affinities:

Ky = fM Extremely strong protein-inhibitor interactions
K¢ = pM Typical strong interactions

Kg =nM Typical moderate interactions

Kg = UM Typical weak interactions

Kg=mM Extremely weak non-specific interactions.

Most functional protein-protein interactions in signal transduction are in the nM-uM range. Equilibrium

constants are some of the most widely available types of experimental data and are often the first target
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of biophysical experiments if an interaction is hypothesized between two proteins. When using available
literature values, the modeler must be aware of experimental caveats such as use of truncated or

chimeric proteins, non-physiological experimental conditions, etc.

8.4 Rate Constants

BioNetGen requires individual microscopic rate constants for each interaction, i.e. per-site asymmetric
rate constants. The conversion from macroscopic to microscopic rate constants in explained in the

Section 5.1. In this section, we focus on how to arrive at the macroscopic constants themselves.

Often these parameters are not explicitly determined or available. They are usually available indirectly
in the form of equilibrium constants or Michaelis-Menten fits. Due to the unconstrained nature of the

relationships between them, assumptions must often be made when modeling explicit reactions.

Consider the bimolecular association reaction described earlier.

K¢
A+ B=AB
&

The “forward” rate constant ks, i.e. the bimolecular rate constant of association, is often estimated by
theoretical derivation or Brownian dynamics simulations (reviewed in (53)). To simplify model
parameterization in the face of insufficient data, a weak assumption can be employed on bimolecular
association rate constants: similar sized molecules have similar diffusivities and therefore similar
association rate constants under well-mixed conditions. The diffusion coefficient for small molecules in
water places an upper limit on the possible diffusion coefficients for proteins and consequently, the
association rate constants. Typical ranges of values for the association rate constant (high to low)

include (53):
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10" ms?t Diffusion limit in water

10>-10° Mm's™ Small molecule interactions

10’-10° M*s™? Protein-protein interactions involving long-range electrostatics
10%-10’ M's™t Typical protein-protein interactions

10*-10° M™s™? Interactions of bulky slowly-diffusing proteins

Dissociation rate constants (k,) are much harder to theoretically derive or estimate using simple
assumptions. More often than not, they need to be experimentally verified. Dissociation rate constants
can also vary over a much wider range than association rate constants for similarly-sized molecules. If
equilibrium constants are the only available data, a consistent approach to estimating dissociation rates

is to assume a fixed association rate constant and compute the dissociation rate constant:

K=t oX oy &k
a_Kd_kr r—Ka—fd

In the case of enzymatic catalysis, interactions are typically reported using the implicit enzyme
parameters ke and Ky which are estimated under controlled conditions. However, as explained in the
Section 5.3, in large and dense biological networks, it is preferable to model the reactions explicitly
using the rate parameters ki, k; and k... The three explicit rate parameters can be derived from the two
implicit enzyme parameters by making an additional assumption. To be consistent with our previous

approach, the forward rate constant ks can be fixed and the reverse rate estimated:

_ Ky + Keat

M= Kr = k; = Kmks — Keat

When determined experimentally, the dissociation rate k; (units sec™) is often expressed in terms of the
stability of the formed complex. A typical quantification is the half-life T,/ which denotes the time taken

(sec) for half the complexes to dissociate or the exponential decay constant 1. (sec) which denotes the
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time taken for the concentration of the complex to decay to 1/e of the original value (Euler number

e=2.71828). The dissociation rate is inversely proportional to these decay constants.

T1/2  Te

In2 1
k j— —

9 Downstream Signaling from the Membrane

In Section 6, we created and simulated a detailed model of receptor-ligand interactions. In this section,

we broadly treat the rest of the signal transduction paradigm (see Figure 8).

Signaling at the membrane causes the recruitment of molecules into an active signaling complex which
possesses or modifies catalytic activities to change the distribution of messenger molecules in the
cytosol and membrane. These messengers subsequently recruit and initiate signaling cascades. The
signaling cascades interact with each other through shared molecules and usually terminate with the
activation/attenuation of transcription factors in the nucleus. These transcription factors
initiate/terminate synthesis of new molecules which can then modify the network structure to adapt to

the incoming stimulus.

Here we focus only on the EGFR (ErbB1) receptor and the signals recruited by its homo-dimerization.
One should keep in mind that ErbB1 is only one member of the growth factor activated ErbB kinases and
that homo- and hetero-dimerization results in a typically dense and intricate network that is still under
experimental scrutiny. We have attempted to capture many of the essential mechanisms here that can

be easily extended or modified.

9.1 Assembling the Signaling Complex

The assembly of the signaling complex at the membrane is a critical step linking the ligand binding that
happens outside the cell to the signaling inside the cell. The EGFR receptor is activated by ligand-induced

enhancement of dimerization that was modeled in Section 6. The dimer formation introduces a
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conformational change that activates the tyrosine kinase domains on the receptor. These kinase

domains then phosphorylate specific tyrosines on the receptor.

These phosphorylated tyrosine sites then form specific docking sites for several proteins that contain
SH2, SH3 and PTB domains. Some recruited proteins such as Grb2, Gab1 and Shcl function as adaptors
and scaffolds to facilitate recruitment of other proteins to the signaling complex. The receptor tyrosine
kinase can also activate binding sites on these adaptors and scaffolds. Among the recruited proteins are
several enzymes that perform one of two functions: (a) activate/deactivate other binding sites in the
complex (typically through phosphorylation/dephosphorylation(54)) or (b) being themselves activated
by the recruitment process, change the distributions of messenger molecules in the cytosol and

membrane.

While utilizing biological literature to formalize the recruitment interactions, it is important to
distinguish sequential (processive) and parallel (distributive) interactions (55). Sequential interactions
are those where every interaction is a prerequisite for the next interaction. Parallel interactions are
those that are independent of each other, occurring on different regions of the same molecule. The
typical phenomenological description of the recruitment process is often misleading, making it seem

sequential, when in fact some interactions can be independent and parallel.

For example, a typical phenomenological statement might be “Phosphotyrosines on the receptor recruit
Grb2 which in turn recruits Sos1”. This makes it seem as if the Sos1-Grb2 interaction is dependent on
the Grb2-phosphotyrosine interaction. A closer look at the structure and function of Grb2 shows that
this implied linearization is false and that the Grb2-Sos1 and Grb2-phosphotyrosine interactions are
independent of each other. The statement is then an observation of just one outcome of these two
parallel interactions, which is Grb2 bound to both Sos1 and a receptor phosphotyrosine. It ignores the

other two outcomes where Grb2 is bound to only one or the other.
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The older modeling literature is replete with such subjective interpretations and rule-based modeling
was developed so that such arbitrary choices can be avoided (55). Structural information on different
molecules is available in several databases such as PDB (56) and UniProt (57) that can be exploited to
model the interactions rigorously and accurately. An intimate knowledge of the structural nature of the

interactions helps in determining which interactions are sequential and which are not.

A good way of distinguishing a sequential binding interaction is to ask the question “Does a new binding
site need to be created/activated for this interaction to occur?” If the answer is yes, then the interaction
is sequential to the previous interaction. If the answer is no, then it is independent of the previous
interaction. An intimate knowledge of the structural aspects of the proteins is very useful in this aspect.
In the absence of conclusive evidence, it is better to assume that interactions are distributive/parallel

rather than processive/sequential.

Knowledge Base: The binding of EGF ligand to EGFR receptor is cooperative with the homo-dimerization of
EGFR. Ligand binding enhances dimerization, but ligand-binding sites on the dimer are negatively

cooperative.

The modeling of this information is treated in the Section 6.

Knowledge Base: Dimerized EGFR autophosphorylates on several tyrosines in its amino acid sequence,

including Y998, Y1016, Y1092, Y1110, Y1138, Y1172, Y1197 (58).

We model the phosphorylation with identical kinetics, although we could potentially use a different rate

constant for each phosphorylation.

R(dim!+,Y998~0) -> R(dim!+,Y998~p) k ph
R(dim!+,Y1016~0) -> R(dim!+,Y1016~p) k ph
R(dim!+,Y1092~0) -> R(dim!+,Y1092~p) k ph

R(dim!+,Y1110~0) -> R(dim!+,Y1110~p) k ph
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R(dim!+,Y1138~0)
R(dim!+,Y1172~0)

R(dim!+,Y1197~0)

Knowledge Base: Dimerized EGFR kinases are also responsible for activation of phosphorylation sites on

-> R(dim!+,Y1138~p)
-> R(dim!+,Y1172~p)

-> R(dim!+,Y1197~p)

k ph
k ph

k ph

Gab1 and Shc1 if they are present in the same complex. These include Y627 on Gab1 (59), tandem YXXP and

YXXM motifs on Gab1 (59) and Y317 on Shc1 (60).

We can use a dot operator to show that these molecules are in the same complex when they are

modified, even though there can be several ways in which the molecules could be recruited.

R(dim!+) .Gabl (YXXP~0)

R(dim!+) .Gabl (YXXM~0)

R(dim!+) .Gabl (¥Y627~0)

R(dim!+) .Shcl (¥317~0)

R(dim!+) .Gabl (YXXP~p)

R(dim!+) .Gabl (YXXM~p)

R(dim!+) .Gabl (Y627~p)

R(dim!+) .Shcl (Y317~p)

k ph
k ph
k ph

k ph

Knowledge Base: If the molecule Shp2 is recruited to the complex, it opposes the phosphorylation activity of

the receptor tyrosine kinases (61).

In the absence of a dephosphorylation event, the phosphorylation sites will be saturated to

phosphorylation even with a tiny amount of dimerization, as explained in Section 5.2. Shp2 recruited to

the complex can dephosphorylate any of the kinase substrates:

Shp2 () .
Shp2 ()
Shp2 ()
Shp2 ()
Shp2 ()

Shp2 ()

Shp2 ()

Shp2 ()

R(Y998~p) ->
LR(Y1016~p)  ->
LR(Y1110~p)  ->
LR(Y1138~p)  ->
LR(Y1172~p)  —>
LR(Y1197~p)  ->

.Gabl (YXXP~p) ->

.Gabl (YXXM~p) ->

Shp2 ()
Shp2 ()
Shp2 ()

Shp2 ()

Shp2 () .

Shp2 ()

Shp2 ()

Shp2 ()

.R(Y998~0)

.R(Y1016~0)

.R(Y1110~0)

.R(Y1138~0)

R(Y1172~0)

.R(Y1197~0)

.Gabl (YXXP~0)

.Gabl (YXXM~0)

k deph
k deph
k deph
k deph
k deph

k deph

k deph

k deph
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Shp2 () .Gabl (Y627~p)

Shp2 () .Shcl(¥Y317~p)

Knowledge Base: The receptor phosphotyrosines recruit proteins in the following manner: Y1110, Y1138,

-> Shp2 () .Gabl(Y627~0)

-> Shp2 () .Shcl(¥Y317~0)

k deph

k deph

Y1172 and Y1197 bind both Grb2 and Shc¢1.Y1092 binds only Grb2. Y1016 binds only Shp2. Y998 binds both

Shp2 and Shc1 (58). All binding interactions are reversible.

The interaction with the receptor is localized to the SH2 domain on Grb2. The N-terminal regions of

Shcl, Shp2 and Rasal all contain SH2/SH3/PTB domains in some combination that enables binding to

specific phosphotyrosines. They are modeled as generic ‘n’ domains, referring to their N-terminal

position.

# Binding of Y1110,

R(Y1110~p) + Grb2 (sh2) <=>
R(Y1138~p) + Grb2 (sh2) <=>
R(Y1172~p) + Grb2 (sh2) <=>

R(Y1197~p) + Grb2(sh2) <->

R(Y1110~p) + Shcl(n) <-> R(Y1110~p!1)
R(Y1138~p) + Shcl(n) <-> R(Y1138~p!1)
R(Y1172~p) + Shcl(n) <=> R(Y1172~p!1)
R(Y1197~p) + Shcl(n) <> R(Y1197~p!1)

# Binding of Y1092

R(Y1092~p)

# Binding of Y1016

R(Y1016~p)

# Binding of Y998
R(Y998~p)

R(Y998~p)

+ Grb2 (sh2) <=>

+ Shp2 (n) <=>

+ Shcl (n) <=>

+ Shp2 (n) <=>

Y1138, Y1172 and Y1197

R(Y1110~p!1)
R(Y1138~p!1)
R(Y1172~p!1)

R(Y1197~p!1)

R(Y1092~p!1)

R(Y1016~p!1)

.Grb2 (sh2!1)
.Grb2 (sh2!1)
.Grb2 (sh2!1)

.Grb2 (sh2!1)

.Shcl(n!l)
.Shcl(n!l)
.Shcl(n!l)

.Shcl(n!l)

.Grb2 (sh2!1)

.Shp2(n!1l)

R(Y998~p!1l) .Shcl(n!1l)

R(Y998~p!1l) .Shp2(n!l)

kf pY grb2,kr pY grb2
kf pY grb2,kr pY grb2
kf pY grb2,kr pY grb2

kf pY grb2,kr pY grb2

kf pY shcl,kr pY shcl
kf pY shcl,kr pY shcl
kf pY shcl,kr pY shcl

kf pY shcl,kr pY shcl

kf pY grb2,kr pY grb2

kf pY shp2,kr pY shp2

kf pY shcl,kr pY shcl

kf pY shp2,kr pY shp2
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A contact map with defined symbols for components, interactions and influences is useful in
summarizing these reaction rules. The conventions followed for the contact maps in this tutorial are
shown in Figure 9. A contact map of the kinase and phosphatase activities in the signaling complex and

the primary binding interactions with the receptor are shown in Figure 10.

The molecules recruited to the primary phosphotyrosines on the receptor have complex interactions
among themselves. Grb2 and Shcl are adaptor proteins that bind each other as well as other proteins.

Gabl, a protein recruited via Grb2, is a scaffold protein with multiple binding sites.

Knowledge Base: Grb2 has three domains SH2, SH3N and SH3C. In addition to receptor phosphotyrosines
binding, the SH2 domain is capable of binding phosphorylated Y317 of Shc1 (60). The SH3N domain recruits
Sos1 through the N-terminal domain of Sos1 (62). The SH3C domain recruits Gab1 through a proline-rich
region on Gab1 (59). Certain serines on Sos1 (63) and certain serines and threonines on Gab1 (59) need to be

unphosphorylated for the Grb2 binding to be effective.

Grb2 (sh2) + Shcl (Y317~p) <-> Grb2(sh2!1l).Shcl(¥317~p!1l) kf grb2shcl, kr grb2shcl
Grb2 (sh3n) + Sosl(S~0,n) <-> Grb2(sh3n!'l) .Sosl (S~0,n!'1l) kf grb2sosl,kr grb2sosl

Grb2 (sh3c) + Gabl (ST~0,pro)<->Grb2(sh3c!l) .Gabl (ST~0,pro!l) kf grb2gabl,kr grb2gabl

Knowledge Base: The Gah1 scaffold protein contains tandem YXXP motifs that bind the N-terminal domain
of Rasa1 on phosphorylation. Similarly, a phosphorylated tandem YXXM motif binds the regulatory subunit
p85 of PI3K. Phosphorylated Y627 recruits the Shp2 phosphatase. All of these binding events require that

certain serines and threonines on Gab1 remain unphosphorylated (59).

Gabl (ST~0, YXXP~p) +Rasal (n) <->Gabl (ST~0, YXXP~p!l) .Rasal (n!l) kf gablrasal, kr gablrasal
Gabl (ST~0, YXXM~p) +PI3K (p85) <->Gabl (ST~0, YXXP~p!1l) .PI3K(p85!1) kf gablpi3k, kr gablpi3k

Gabl (ST~0,Y627~p) +Shp2 (n) <->Gabl (ST~0, YXXP~p!1l) .Shp2(n!l) kf gablshp2, kr gablshp2
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The secondary binding interactions between the molecules recruited to the receptor are summarized in
Figure 11. The contact map in Figure 11 is to be considered complementary to the contact map in Figure

10 and not exclusive.

9.2 Secondary Messenger Activation

As mentioned earlier, certain catalytic activities are activated on recruitment to the signaling complex.
These catalytic activities rapidly change the distributions of certain effector molecules in the plasma
membrane and cytosol. This manifests as a large phenotypic switch causing wholesale activation of
corresponding cytosolic signaling pathways. In this section, we consider activation of Ras, a GTPase

switch and PIP3, a phosphoinositide messenger.

9.2.1 PIP3 Activation

Phosphoinositides are small lipid molecules that function as secondary messengers in several eukaryotic
pathways. Phosphoinositides can be interconverted by adding and removing phosphates onto the 3’,4’
and 5’ positions on the inositol moiety. The ratio and spatial distribution of the different
phosphoinositides is exploited for signaling purposes. In growth-factor receptor activation, the
interconversion of phosphatidylinositol (4,5)-bisphosphate, also known as PIP2 and phosphatidylinositol
(3,4,5)-trisphosphate is especially critical. PIP3 is maintained at very low levels by the activity of cytosolic
PTEN phosphatase. PIP3 levels are drastically increased by recruitment of PI3K to the membrane. PIP3
thus serves as a secondary messenger for activating several PH-domain containing proteins, an
important one being Akt, which triggers the Akt/mTor pathway critical for cell proliferation and
differentiation. The information here can be found in (64). The rules describing change of state have the

appropriate component underlined for emphasis.
Knowledge Base: PIP3 is maintained at low levels by conversion to PIP2 by PTEN phosphatase.

Here, we model PIP3 as a phosphoinositide with a 3’ site targeted by the phosphatase.
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PTEN (c2) + PI(3p~p) <-> PTEN(c2!1).PI(3p~0!1) kf pip3 pten,kr pip3 pten

PTEN(c2!1) .PI(3p~0!1) -> PTEN(c2) + PI(3p~p) kcat pten

Knowledege Base: The p110 domain of PI3K catalyzes conversion of PIP2 to PIP3 when recruited to the

membrane.

R() .PI3K(pl10) + PI(3p~0) <-> R().PI3K(pll1l0!1).PI(3p~0!'1) kf pip2 pi3k,kr pip2 pi3k

PI3K(pl10!1).PI (3p~0!1) -> PI3K(pll0) + PI(3p~p) kcat pi3k

Knowledege Base: PIP3 recruits PH-domain containing proteins like Gab1 (59) and Akt to the membrane.

Gabl (ph) + PI(3p~p) <-> Gabl(ph!l).PI(3p~p!l) kf pip3 gabl,kr pip3 gabl

Akt (ph) + PI(3p~p) <-> Akt (ph!l).PI(3p~p!l) kf pip3 akt, kr pip3 akt

Knowledge Base: PIP3-recruited Gab1 is at the membrane can be recruited to the signaling complex easily.

Gabl (ph!l,pro) .PI(3p~p!l) + R().Grb2(sh3c)-> Gabl (ph,pro!2).Grb2(sh3c!2) + PI(3p~p) \

k gablgrb2 mem

Knowledge Base: PIP3-recruited Akt is an active kinase with downstream substrates such as mTOR.

Akt (ph!+,kin) + mTor (S2448~0) <-> Akt (ph'!+,kin!l) .mTor (S2448~0!1) \

kf akt mtor,kr akt mtor

Akt (ph!+,kin!l) .mTor (S2448~0!1) -> Akt (ph!+,kin) + mTor (S2448~p) kcat akt

The PIP3 activation and downstream interactions modeled here are illustrated in Figure 12.

9.2.2 Ras Activation

Ras is a small GTPase protein that is tethered to the membrane and binds with high affinity to free
guanidine nucleotides (GTP and GDP) in the cytosol. Ras, in its basal state, slowly catalyzes the
dephosphorylation of GTP into GDP. In the absence of ligand-induced signal, the majority of Ras
molecules are bound to GDP. When bound by a guanidine nucleotide exchange factor (GEF), Ras

releases the GDP nucleotide and binds a free GTP nucleotide. Since free GTP is in excess over free GDP
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under normal conditions, we can assume that the binding event after GDP release is always with a GTP.

The Ras population switches from a GDP-bound majority to a GTP-bound majority.

Ras-GTP, by binding to other molecules, initiates many signaling cascades including the MAPK cascade.
The intrinsic GTPase activity can be enhanced by a GTPase activating protein (GAP) to provide the
opposite effect, i.e. to quickly revert a Ras-GTP population to Ras-GDP. EGFR recruits both Sos1 (a GEF)

and Rasal (a GAP) to the membrane through adaptors and scaffolds.

Ras has three subtypes: HRas, NRas and KRas with many common interactions among them. Here, we
model HRas as an example. Instead of modeling the nucleotide as a separate molecule, we model it as
simply a state on a HRas component. This is because the binding of GDP/GTP to HRas is very strong and
does not reverse spontaneously. Any free HRas quickly binds to excess free nucleotide. The nucleotide

binding site is underlined for emphasis whenever a GTP-GDP or GDP-GTP transition occurs.

The following information is taken from (62). The rules describing change of state have the appropriate

component underlined for emphasis.

Knowledge Base: HRas has a protein binding site and a nucleotide binding site. The nucleotide binding site

can be assumed to bind GTP or GDP strongly. HRas has innate GTPase activity.

HRas (pbs, nbs~gtp) -> HRas (pbs,nbs~gdp) k hras gtpase

Knowledge Base: Receptor bound Rasa1 is a GAP, i.e. it enhances the GTPase activity of HRas.

R() .Rasal (gap) +tHRas (pbs, nbs~gtp) -> R() .Rasal(gap!l) .HRas (pbs!l,nbs~gtp) kf rasal hras
Rasal (gap!l) .HRas (pbs!1l,nbs~gtp) -> Rasal (gap) + HRas (pbs,nbs~gtp) kr rasal hras

Rasal (gap!l) .HRas (pbs!1l,nbs~gtp) -> Rasal (gap) + HRas (pbs,nbs~gdp) kcat rasal

Knowledge Base: Sos1 recruited to the membrane can bind HRas at two places, an allosteric site and a

catalytic site. Sos1 possesses GEF activity, i.e. it catalyzes the release of GDP from the HRas bound at the
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catalytic site. The GEF activity is enhanced by the presence of another HRas bound at the allosteric site.

When GDP is released, GTP is assumed to bind immediately since it is in excess over GDP.

# HRas-GDP binding at GEF site
R() .Sosl (gef) +HRas (pbs, nbs~gdp) ->R () .Sosl (gef!l) .HRas (pbs!1l,nbs~gdp) kf soslgef hras

Sosl(gef!l) .HRas (pbs!l,nbs~gdp)-> Sosl (gef) + HRas (pbs,nbs~gdp) kr soslgef hras

# HRas (both GTP and GDP) binding at allosteric site
R().Sosl(allo) + HRas(pbs) -> R().Sosl(allo!l) .HRas (pbs!l) kf soslallo hras

Sosl(allo!l) .HRas (pbs!l) -> Sosl(allo) + HRas (pbs) kr soslallo hras

# GEF activity in presence/absence of GTP at allo-site
HRas (pbs!1l,nbs~gdp) .Sosl (gef!l,allo)-> HRas (pbs,nbs~gtp)+Sosl (gef,allo) kcat sosl 1

HRas (pbs!1l,nbs~gdp) .Sosl (gef!l,allo!+)->HRas (pbs,nbs~gtp) +Sosl (gef,allo!+) kcat sosl 2

The modeled HRas activation is illustrated in Figure 13.

9.3 Cytosolic Signaling - MAPK Cascade

The Ras proteins, on activation by GTP binding, go on to activate several pathways. One of the most
widely-studied Ras-activated pathways is the classical mitogen activated protein kinase (MAPK) cascade.
MAPKs are kinases that are heavily involved in growth-related transcription factor regulation.
Previously, the paradigm of activation was that MAPKs were phosphorylated by MAP2Ks and MAP2Ks
were phosphorylated by MAP3Ks, which in turn were activated by binding of Ras-GTP. However, as
evidence accumulated, it became fairly obvious that the situation is not so simple. The presence of
multiple subtypes, oligomerization, scaffolds, feedback-mechanisms and cell-specific conditions

confound the study of this complex pathway.

As mentioned earlier, there are three subtypes of Ras proteins: HRas, KRas and MRas. MAP3Ks are of
three types too: Rafl, Raf2 and Raf3.They are subject to complex regulation from other signaling

pathways as well as regulation by each other. Mekl and Mek2 are MAP2K subtypes. MAPKs themselves
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have multiple families such as the Erk (Erk1 and Erk2) and Jnk. Erk2 can cause negative feedback by

deactivating Gab1 and Sos1, early participants in Ras-activation. The primary function of the MAPKs

seems to be in the nucleus though, causing activation of growth-related transcription factors such as

those of the AP1 family.

With these caveats, the model presented here omits many of the known details of the MAPK cascade

and is provided to illustrate how the basic biochemistry can be encoded. The rules describing change of

state have the appropriate component underlined for emphasis.

Hypothesis: HRas-GTP binds Rafl and causes a conformational change (65). Rafl is now an active

kinase that can phosphorylate Mek1 (66) on $218 and $222. The phosphorylation is antagonized by

the phosphatase PP2A (67).

# HRas-GTP binds Rafl
HRas (nbs~gtp,pbs) + Rafl (rbd) -> HRas (nbs~gtp,pbs!l) .Rafl (rbd!1l)

HRas (pbs!l) .Rafl (rbd!1l) -> HRas (pbs!1l) + Rafl(rbd!1l)

# Ras-bound Rafl is a kinase of Mekl
Rafl (rbd!+, kin) + Mekl1l(S218~0) -> Rafl(rbd!+,kin!1l).Mekl (S218~0!1)

Rafl (rbd!+, kin) + Mekl(S222~0) -> Rafl(rbd!+,kin!l).Mekl (S222~0!1)

Rafl (kin!l) .Mek1 (S218~0!1) -> Rafl(kin!l) + Mekl (S218~0)

Rafl (kin!l) .Mekl1 (S222~0!1) -> Rafl(kin!l) + Mekl (S222~0)

kf hras rafl

kr hras rafl

kf rafl mekl

kf rafl mekl

kr rafl mekl

kr rafl mekl

Rafl (kin!l) .Mekl1 (S218~0!1) -> Rafl(kin) + Mekl (S218~p) kcat rafl

Rafl (kin!l) .Mekl1l (S222~0!1) -> Rafl (kin) + Mekl (S222~p) kcat rafl

# PP2A is a phosphatase of Mekl
PP2A (pptase) + Mekl (S218~p) -> PP2A (pptase!l).Mekl (5S218~p!1)

PP2A (pptase) + Mekl (S222~p) -> PP2A (pptase!l) .Mekl (S222~p!1)

PP2A (pptase!l) .Mekl (S218~p!1) -> PP2A (pptase) + Mekl (S218~p)

PP2A (pptase!l) .Mekl (S222~p!1) -> PP2A (pptase) + Mekl (S222~p)

kf pp2a mekl

kf pp2a mekl

kr pp2a mekl

kr pp2a mekl
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PP2A (pptase!l) .Mekl (S218~p!1l) -> PP2A (pptase) + Mekl (S218~0) kcat ppZ2a
PP2A (pptase!l) .Mekl (S222~p!1l) -> PP2A (pptase) + Mekl (S5222~0) kcat ppZ2a
Hypothesis: Biphosphorylated Mek 1 is an active kinase that can phosphorylate Erk2 (66) on T185 and
Y187. The phosphorylation is antagonized by the phosphatase Dusp1 (68).

# Biphosphorylated Mekl is a kinase of Erk2

Mekl (S218~p,S222~p,kin) + Erk2(T185~0)-> Mekl (S218~p,S222~p,kin!l) . .Er2(T185~0!1) \

kf mekl erk2

Mekl (S218~p,S222~p,kin) + Erk2(Y187~0)-> Mekl (S218~p,S222~p,kin!l).Er2(Y187~0!1) \

kf mekl erk2

Mekl (kin!'!1l) .Erk2 (T185~0!1) -> Mekl (kin!'!l) + Erk2(T185~0) kr mekl erk2
Mekl (kin!'!1l) .Erk2(Y187~0!1) -> Mekl (kin!'!l) + Erk2(Y187~0) kr mekl erk2
Mekl (kin!l) .Erk2 (T185~0!1) -> Mekl (kin) + Erk2(T185~p) kcat mekl
Mekl (kin!l) .Erk2 (Y187~0!1) -> Mekl (kin) + Erk2(Y187~p) kcat mekl

# Duspl is a phosphatase of Erk2

Duspl (pptase) + Erk2(T185~p) -> Duspl (pptase!l) .Erk2(T185~p!1) kf duspl erk2
Duspl (pptase) + Erk2(Y187~p) -> Duspl (pptase!l).Erk2(Y187~p!1l) kf duspl erk2
Duspl (pptase!l) .Erk2 (T185~p!1) -> Duspl (pptase) + Erk2(T185~p) kr duspl erk2
Duspl (pptase!l) .Erk2 (Y187~p!1l) -> Duspl (pptase) + Erk2(Y187~p) kr duspl erk2
Duspl (pptase!l) .Erk2 (T185~p!1) -> Duspl (pptase) + Erk2(T185~0) kcat duspl
Duspl (pptase!l) .Erk2 (Y187~p!1) -> Duspl (pptase) + Erk2(Y187~0) kcat duspl

Signal transduction networks exhibit significant positive and negative feedback, i.e. downstream
effectors doubling back and modifying (enhancing or attenuating) the properties of upstream signal
proteins. This enables ultra-sensitivity in regulation and adaptive responses to incoming signals.
Interesting dynamic phenomena such as oscillations and travelling waves are also observed in some

cases due to such feedback (69).
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Knowledge Base: Biphosphorylated Erk2 can dimerize with other Erk2 (phosphorylated or
unphosphorylated). The dimer is catalytically active on many substrates [54], including negative regulatory

sites on Gab1 (59) and Sos1 (68).

Erk2 (T185~p,Y¥187~p,dim)+ Erk(dim) -> Erk2(T185~p,Y187~p,dim!1l)+ Erk2(dim!l) kf erk2 dim

Erk2 (dim!1l) .Erk (dim!1) -> Erk2 (dim) + Erk(dim) kr erk2 dim
Erk2 (dim!+, kin) + Gabl (ST~0) -> Erk2 (dim!+,kin!1l) .Gabl (ST~0!1) kf erk2 gabl
Erk2 (kin!l) .Gabl (ST~0!'1) -> Erk2 (kin) + Gabl (ST~0) kr erk2 gabl
Erk2 (kin!l) .Gabl (ST~0!'1) -> Erk2(kin) + Gabl (ST~p) kcat erk2 gabl
Erk2 (dim!+, kin) + Sosl (S~0) -> Erk2 (dim!+,kin!1l) .Sosl (S~0!1) kf erk sosl
Erk2 (kin!l) .Sosl1(S~0!1) -> Erk2 (kin) + Sosl (S~0) kr erk sosl
Erk2 (kin!l) .Sosl1(S~0!1) -> Erk2(kin) + Sosl(S~p) kcat erk2 sosl

The modeled rules are illustrated in Figure 14.

9.4 Gene Regulation

Extracellular signals have their furthest-reaching effects when the transduced signals culminate in the
nucleus. This is usually accomplished by changing the distribution of transcription factors in the nucleus

causing repression or enhancement of mRNA transcript production from multiple genes.

The central dogma of biology, i.e. transcription followed by translation can be explicitly implemented

using rules. Both involve creation of new molecules (MRNA transcripts and proteins).

Gene (a) -> Gene(a) + Transcript(a) k transcription

Transcript(a) -> Transcript(a) + Protein(a) k translation

If stochastic fluctuations (due to genes turning on and off are important to the system), then it is
important to restrict the number of molecules of the Gene to the actual copy number to replicate real

behavior.
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A simplifying assumption can be made where all the transcription, translation and post-synthetic
modification steps can be compressed into a single step. This amounts to assuming that the delay
caused by sequence of steps in creating the product is negligible when compared to the rates at which

the protein is produced (see (49) supplementary material). The effective reaction would be:

Gene (a) —-> Gene(a) + Protein(a) k syn

Protein synthesis can also be made dependent on transcription-factor binding.

Gene (tf)+ TF(gene) <-> Gene(tf!0).TF(gene!0) kf gene tf,kr gene tf

Gene (tf!+) -> Gene(tf!+) + Protein(a) k syn

Often the binding can be assumed to be in quasi-equilibrium on the time scale on which genes are
expressed, so that the expression rate becomes a function of the transcription factor concentration. An

example is shown here using a Hill rate law (see Section 5.3.2 for details).

TF () +Gene () —-> TF()+Gene () +Protein () Hill (k,K,n)

In the rest of this section we will implement reaction rules pertaining to gene regulation by a cytosolic
signal. The rules will be modeled in the compartmental context, retaining the same compartmental
hierarchy in Section 7.4 and Figure 5. Specifically we will model the transduction of signal from two
parallel MAPK pathways in the form of Erk2 and Jnk1 into the nucleus and activation of the AP1

transcription factor. The information presented here is reviewed in (71,72,73).

Knowledge Base: Biphosphorylated Erk2 and Jnk1 can reversibly homodimerize in both cytosolic and

nuclear compartments. It is sufficient that one partner is phosphorylated.

Erk2 (T185~p,Y¥187~p,dim)+ Erk(dim) -> Erk2(S218~p,S222~p,dim!1l)+ Erk2(dim!1l) kf erk2 dim

Erk2 (dim!1l) .Erk (dim!1) -> Erk2 (dim)

Jnkl (T183~p,Y¥185~p,dim)+ Jnk(dim) ->

Jnkl (dim!1) .Jnk (dim!1) ->

Jnkl (T183~p,Y¥185~p,dim!1l)+ Jnkl (dim!1l)

Jnkl (dim)

+ Erk(dim)

+ Jnk (dim)

kr erk2 dim

kf jnkl dim

kr jnkl dim
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Since homo-dimerization occurs in both cytosolic and nuclear compartments, it is sufficient to model

them with universal reaction rules.

Knowledge Base: Both Erk2 and Jnk1 monomers passively diffuse into the nucleus. Erk2 and Jnk1 dimers

also translocate to the nucleus at a faster rates.

Since the nucleus and cytosol are bridged by the nuclear membrane, we use bridged-volume molecule

transport rules. We also need to allocate separate microscopic rates for monomers and dimers.

# Erk2 and Jnkl monomer transport
Erk2(T185,Y187,dim, kin) @Cyt <-> Erk2(T185,Y187,dim, kin) @Nuc k tr erk2 m,k tr erk2 m

Jnk1(T183,Y185,dim, kin) @Cyt <-> Jnkl1l(T183,Y185,dim, kin) @Nuc k tr jnkl m,k tr jnkl m

# Erk2 and Jnkl dimer transport
Erk2 (T185,Y187,dim!1l,kin)@Cyt.Erk2(T185,Y187,dim!1,kin)@Cyt <-> \

Erk2(T185,Y187,dim!1, kin) @Nuc.Erk2 (T185,Y187,dim!1, kin) @Nuc k tr erk2 d,k tr erk2 d

Jnk1(T183,Y185,dim!1,kin)@Cyt.Jnkl (T183,Y185,dim!1,kin)@Cyt <-> \

Jnk1(T183,Y185,dim!1, kin) @Nuc.Jnkl (T183,Y185,dim!1, kin) @Nuc k tr jnkl d,k _tr jnkl d

Note that the other components on Erk2 and Jnk1l need to be in unbound state to allow transport.

Knowledge Base: Fos and Jun are transcription factors synthesized and maintained at a certain level in the

nucleus.

FosGene () @Nuc -> FosGene () @Nuc + Fos (y~0) @Nuc k syn fos
JunGene () @Nuc -> JunGene () @Nuc + Jun (y~0) @Nuc k_syn jun
Fos () @Nuc -> 0 k del fos

Jun () @Nuc -> 0 k del jun

Instead of simply creating a preexisting number of Fos and Jun molecules, we now have a dynamic

equilibrium of synthesis/degradation events that leads to a steady state number of Fos and Jun.
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Knowledge Base: Activated Erk2 and Jnk1 dimers can phosphorylate Fos and Jun respectively.

Erk (dim!+,fos) + Fos(y~0)<-> Erk(dim!+, fos!0) .Fos (y~0!0) kf erk fos,kr erk fos
Erk(dim!+, fos!0) .Fos(y~0!0)-> Erk(dim!+, fos) + Fos(y~p) k ph erk
Jnk (dim!+,kin) + Jun(y~0)<-> Jnk(dim!+,kin!0) .Jun(y~0!0) kf jnk kin,kr jnk kin
Jnk (dim!+,kin!0) .Jun(y~0!0)-> Jnk(dim!+, kin) + Jun(y~p) k ph jnk

Since there are no direct or indirect transport mechanisms for Fos and Jun, universal rules are sufficient
to model these interactions. Activated Fos and Jun can dimerize to form the transcription factor AP1
which shows binding affinity for other transcription factors and certain promoter DNA sequences. The
binding sites are shared across both Fos and Jun subunits. Since the Fos-Jun dimer seems to behave as

an independent molecule type with binding sites, we create a new molecule type called AP1.

Knowledge Base: Activated Fos and Jun can hetero-dimerize to form AP1 (Fos-Jun). AP1 can be degraded.

Fos (y~p) + Jun(y~p) <-> APl (g,nfat) kf kin kin,kr kin kin

APl () @Nuc -> 0 k del apl

Knowledge Base: AP1 can bind to promoter sequences and activate target genes on its own or in

combination with other transcription factors (NFAT). AP1 bound genes enable synthesis of target proteins in

the cytosol.

APl (nfat) + NFAT (apl) <-> APl (nfat!0) .NFAT (apl!0) kf apl nfat,kr apl nfat
APl (g) + TargetGene (prm) <-> AP1(g!0).TargetGene (prm!0) kf apl gene,kr apl gene
TargetGene (prm!+) @Nuc -> TargetGene (prm!+)@Nuc + TargetProtein@Cyt k syn apl

The gene regulation model is illustrated in Figure 15.

10 Good Modeling Practice

This section is intended as a summary of the critical points from the previous sections.

¢ Name molecules after important indivisible entities in the model.
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Name components after biological substructures (domains, motifs, amino acid sequence position,
etc.) or their binding partner or their designated function.

The fewer the transformations in a reaction rule, the more realistic it is.

Unimolecular and bimolecular reaction orders are realistic. Higher orders are less so.

The rate constant used should be the asymmetric, per-site rate-constant, which would require
scaling by volume and Avogadro number in BNG and only by Avogadro number in cBNG.

When writing reaction rules, omit components that do not influence the rate of the reaction.
Two reactions having the same reaction center can have different kinetics. If this is the case, use
two different rules to model them, unless the difference is due to symmetry and multiplicity

effects, which BioNetGen determines automatically.
Cooperative interactions must obey detailed balance.
Use wildcards in reaction rules and observables to finely tailor matching conditions in patterns.
When synthesizing a new species in a reaction rule, provide the full species specification.
Most transformations are reversible in a realistic model. Unless there is specific information on
irreversibility, there should exist rules that:
o Dephosphorylate all phosphorylation sites.
o Break all bonds that can be formed.
o Degrade all molecules that can be synthesized.
Deletion rules delete the whole species by default. Use DeleteMolecules keyword to delete only
the respective molecules not the whole species.
When transporting molecules in cBNG, check to see if you are transporting molecules or species.
Avoid rate-law approximations. Prefer explicit mechanisms.
Assume two interactions are independent (distributive), unless there is specific reason to model

them sequentially (processive). The literature can be misleading about the sequential nature.

QQ



Use structural knowledge to infer how interactions affect each other. In the absence of

information, assume independence of interactions.

If small changes can cause drastic effects, use a stochastic simulator.

If the network is too big, use a network-free simulator.

To simulate a typical biological experiment, always equilibrate before perturbing.

Avoid having to generate the same network repeatedly, especially with large networks.
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Figures

Figure 1: Pattern Matching To Generate Reactions. Patterns are incompletely defined species, such as
those in gray. The pattern is said to match to a species if the species possesses a substructure that is
equivalent to the pattern. In this case, the pattern R(lig) matches the species R(lig,ch~open) and
R(lig,ch~closed). Reactions on patterns are called reaction rules. When the patterns match to full
species, reaction rules match to reactions. The reactions all are identical with respect to their
microscopic kinetics, i.e. they have identical per-site asymmetric rate constants. The symmetry and
multiplicity factors are automatically detected and assigned by BioNetGen. In this case the reaction is

the formation of a bond between the lig component of R and the rec component of L.

Figure 2: Use of Hill/Sat Rate Laws. The Hill rate-law function f(S) is plotted for different parameter sets.
A) K=1, n=1. k is varied from 1 to 5 and it controls the maximum value attained at high concentrations.
B)k=1, n=1. K is varied from 0.01 to 10 and it controls the point at which half the maximum value is
attained. C)k=1, K=1. n is varied from 0.1 to 4 and it controls the steepness of the switch from zero to

maximum. n=1 is the special case of the Sat rate law. n is also called the Hill coefficient.

Figure 3: Simulation of Receptor Dimerization Model. A) A model of ligand-induced dimerization and
subsequent kinase activation is simulated using deterministic ODE integration. From t=0 to t=200 sec,
the system is equilibrated and at t=200 sec, the system is perturbed by adding the ligand. The monomer-
dimer equilibrium shifts rapidly with an increase in the number of molecules in dimers. Since kinase
activity depends on dimerization, the number of phosphorylated sites also increases concurrently. Note
that the trajectories are smooth (see inset). B) The same sequence of simulations is performed using
Gillespie’s SSA. Note that the trajectories are noisy (see inset), but the noise is relatively small because

of the larger population sizes and the observed behavior is similar to that of Panel A.



Figure 4: Model File. This is the model file used for simulation in Section 6, the results of which are

plotted in Figure 3.

Figure 5: Compartment Hierarchy. To use cBNG, the modeler must define a compartments block with
an appropriate nesting of compartments. 3D-compartments, called volumes can only enclose 2D-
compartments, called surfaces and vice-versa. A volume can enclose more than one surface, but a
surface cannot enclose more than one volume. In this hierarchy, Ext, Cyt, Nuc and End are volumes and

PIm, Num, Enm are surfaces.

Figure 6: Topologically Consistent Species. cBNG maintains topological consistency whenever a
transport rule is implemented. Topologically consistent species do not have bonds traversing
compartments. The species itself cannot span more than one surface. Reactions that create

topologically inconsistent species are discarded.

Figure 7: Transport. The different types of transport mechanisms available in cBNG are illustrated. The

details can be found in Section 7.4.4.

Figure 8: General Paradigm of Signal Transduction. At each compartmentalization of the cell, numerous
processes of various types occur. These processes interact with each other and also with processes in
adjacent compartments through means of transport. In general, a signal from the exterior is detected at
the membrane, transduced through the cytoplasm and concludes in gene regulation. This changes the
transcription profile, subsequently affecting the protein distribution and can lead to a phenotypic

change of state for the entire cell.

Figure 9: Contact Map Explanation. Square boxes are molecules and curved boxes are components. The
bond symbol is a crossed out circle with arrows on both sides and represents a potential reversible bond

between components. The different permutations of bonds can be expressed concisely by combining



the arrows of the bond symbol. Influences are shown by unidirectional or bidirectional arrows with
white solid arrowheads. Unidirectional influences always begin on a solid dot. The gray bowtie symbol
indicates a reversible state-change. An influence arrow terminating on one side of the bowtie is a
catalyst to convert the state to the other side of the bowtie. Influences can terminate on bond

interactions or on other influences.

Figure 10: Signal Complex Assembly, Receptor Interactions. This encapsulates the direct interactions of
the receptor with other molecules. The receptor can bind the ligand, dimerize with another receptor
and the dimerized state activates the kinase activity of the receptor, resulting in phosphorylation of the
many tyrosines on its tail. The kinase activity is not limited to its own tyrosines, but also tyrosines on
other molecules that may be in the complex, such as Gab1 and Shcl. The phosphotyrosines can bind and
recruit other molecules. One of the recruits is a phosphatase Shp2 that dephosphorylates the tyrosines

in the same complex.

Figure 11: Signal Complex Assembly, Recruit Interactions. The recruited molecules in the EGFR
themselves have complicated binding properties with respect to each other. Certain serines on Sos1 and
serines and threonines on Gabl have a negative effect on the binding properties of Sos1 and Gab1 and

this is utilized to create a feedback loop by molecules downstream of the signal.

Figure 12: PIP3 Activation. PI(3,4,5)P2 or PIP3 is an important secondary messenger whose levels are
kept at low basal levels by the phosphatase PTEN which catalyzes it to PI(4,5)P2 or PIP2. The 3" position
on the inositol moiety is modeled as a separate component which can either be phosphorylated or
unphosphorylated. PI3K is a kinase which can convert PIP2 to PIP3 but it is activated only by recruitment
to the membrane by recruitment to the EGFR signaling complex. PIP3 can then activate many other
signaling cascades by recruitment, an important one being the kinase Akt. It can also strengthen existing

signals since Gab1l possesses a PH domain that can bind PIP3.



Figure 13: Ras Activation. Using HRas as an example, the complex interactions involved in Ras activation
are shown. Rasal and Sos1 are recruited to the receptor in multiple ways (see Fig.11-12). HRas is
distributed on the membrane and comes into contact with Sos1 and Rasal. Both Sos1 and Rasal have
antagonistic activity towards HRas. Sos1 enables the quick release of bound HRas-GDP, letting HRas bind
ubiquitous GTP and become activated. Rasal enhances the GTPase activity of HRas, speeding up the

conversion of HRas-GTP to HRas-GDP.

Figure 14: MAPK Cascade. The canonical MAPK cascade is shown for illustration purposes. In reality, the
pathway is much more complicated. Here, the example G-protein HRas activates Rafl by binding, when
HRas is in GTP-bound state. The HRas-GTP-bound Rafl undergoes a conformational change and
becomes an active kinase. It binds to and phosphorylates serines on Mek1 and this is opposed by an
example phosphatase PP2A. Phosphorylated Mek1 is an active kinase and phosphorylates Erk2 on its
threonines and this is opposed by a dual-specificity phosphatase, Duspl shown as an example.
Phosphorylated Erk2 can dimerize and this positively influences affects its kinase activity. Erk2 has
several system-wide substrates, two important ones being Gab1 and Sos1 which allows negative

feedback control over the transduced signal.

Figure 15: AP1 Activation. Erk2 and Jnk1 are MAP-Kinases that are activated through many pathways,
especially growth factor signals. Both Erk2 and Jnk1 can translocate to the nucleus, with the transport
being enhanced by dimerization. In the nucleus, they can activate Fos and Jun transcription factors by
phosphorylation. Fos and Jun are actively synthesized (as shown by the black double arrowhead) and
maintained at equilibrium. Activated Fos and Jun can bind to each other to form the AP1 transcription
factor. Since AP1 has many distinct activities on its own, it is modeled as a separate molecule. The circle
with the star indicates that one molecule of Fos and one molecule of Jun are destroyed to synthesize

one molecule of AP1. AP1 can bind to other transcription factors such as NFAT and the complex can



initiate transcription at several target genes. Here we have also subsumed transcription, translation and

post-translational modification into a single process.
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begin parameters

# Universal constants begin seed species
N_Avo 6.023e23 # per mol R(lig,dim,tyr~u,tyr~u) RO
L(rec) Lo
# Biophysical considerations PTase(a) PO
# Cell is a CHO cell, dimensions & quantities from ref 1 end seed species
# Volume 1.2 pL, Cytoplasm 1 pL, Radius 6.6 microns, Sphere
# Surface area 5.5e-10 mA2 or 5.5e-8 dmA2, Membrane thickness 10 nm (or) le-7 dm begin reaction rules
# External volume 1.6 nL (assuming 6.15e5 cells/mL) # Ligand binding
V_ext 1.6e-9 # L R(lig) + L(rec) -> R(1ig!@).L(rec!®) k_f
V_cell 1.2e-12 # L R(dim,1ig!@).L(rec!®) -> R(dim,1lig) + L(rec) k_rl
V_cyt 1.0e-12 # L R(dim!1,1ig).R(dim!1,1ig!®@).L(rec!®) -> R(dim!1,1ig).R(dim!1,1ig) + L(rec) k_r2
V_nuc V_cell - V_cyt # L R(dim!1,1ig!+).R(dim!1,1ig!@).L(rec!®) -> R(dim!1,1lig!+).R(dim!1,1ig) + L(rec) k_r3
h_mem le-7 # dm
S_mem 5.5e-8 # dmA2 # Dimerization
V_mem h_mem*S_mem # L, comes to 5.5 fL R(dim) + R(dim) -> R(dim!@).R(dim!@) k_f_d
R(dim!@,1ig).R(dim!@,1ig) -> R(dim,1ig) + R(dim,1lig) k_r_d1
# Assumed association reaction rate constant, per M per s R(dim!@,1ig!+).R(dim!@,1ig) -> R(dim,1lig!+) + R(dim,lig) k_r_d2
k_ext 1e9 # EGF, small freely diffusing ligand, so high R(dim!@,1ig!+).R(dim!@,lig!+) -> R(dim,1lig!+) + R(dim,lig!+) k_r_d3
k_mem 1e6 # EGFR, large bulky protein, so low. Calculated from refs 5-7
k_cyt 1e9 # Only small molecules such as Grb2, Sos # Phosphorylation
R{dim!+,tyr~u) -> R(dim!+,tyr~p) kcat
# Equilibrium Constants (Association Constants). Calculated from ref 2 RCtyr~p) -> R(Ctyr~u) kcat
Kdim_2D 5.3e9 # per (mol/dmA2) #R(tyr~p) -> R(Ctyr~u)  Sat(vmax,KM)
Kdim  Kdim_2D*h_mem # per (mol/dmA3) or per M end reaction rules
Kbind 4.6e9 # per M
alpha 120 begin observables
beta 0.07 Molecules BoundLig L(rec!+)
Molecules Monomers R(dim)
# Kinetic Rate Constants Molecules DimerMolec R(dim!+)
k_f k_ext/(N_Avo*V_ext) Molecules Phosph R(tyr~p)
k_f_d k_mem/(N_Avo*V_mem) end observables
k_rl  k_ext/Kbind begin actions
k_r2  k_rl/alpha generate_network({overwrite=>1});
k_r3  k_rl/beta simulate_ssa({suffix=>ssa,t_start=>0,t_end=>200,n_steps=>200});
saveConcentrations();
k_r_dl k_mem/Kdim setConcentration("L(rec)","LO_new");
k_r_d2 k_r_d1/alpha simulate_ssa({suffix=>ssa,continue=>1,t_start=>200,t_end=>500,n_steps=>300});
k_r_d3 k_r_d1/(alpha*beta) end actions
# Kinase & Phosphatase #references
kcat 0.025 # per s #1: Seewoster and Lehmann. Biotechnology and Bioengineering (1997) vol. 55 (5) pp. 793-797
#2: Macdonald and Pike. Proc Natl Acad Sci USA (2008) vol. 105 (1) pp. 112-7
# Initial Concentrations #3: Gabdoulline and Wade.Current Opinion in Struct Biol (2002) vol. 12 (2) pp. 204-13
R_conc 1le5 # Receptors per cell #4: Kholodenko. European Journal of Biochemistry (2000) vol. (267) pp. 1583-1588
L_conc le-3 #M #5: Mayawala et al. Biophys Chem (2006) vol. 121 (3) pp. 194-208
P_conc 200e-9 # M #6: Lauffenburger and Linderman, Oxford University Press, New York, 1993.
RO R_conc #7: Kusumi et al. Biophysical Journal (1993) vol. 65 (5) pp. 2021-40
L@_new L_conc*V_ext*N_Avo
PO P_conc*V_cyt*N_Avo
Lo 0

end parameters

begin molecule types
R(lig,dim,tyr~u~p,tyr~u~p)
L(rec)
PTase(a)
end molecule types
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Contact Map Meaning
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