

Performance Analysis in Parallel Programming

Ezio Bartocci, PhD SUNY at Stony Brook

Today's agenda

- Serial Program Performance
 - An example in the cable
 - I/O statements
 - Taking times
- Parallel Program Performance Analysis
 - The cost of communication
 - Amdahl's Law
 - Work and Overhead
 - Sources of Overhead
 - Scalability

Performance of a Serial Program

Definition of Running Time:

Let be T(n) units the running time of a program.

The actual time depends on:

- the hardware being used
- the programming language and compiler
- details of the input other than its size

```
Example of Trapezoidal Rule:

h = (b-a)/n;
integral = (f(a)+f(b))/2.0;
x = a;
for (i=1; i <=n-1; i++){
x = x + h;
integral = integral + f(x);
integral = integral * h;
C_1
```


$$T(n) = c_1 + c_2(n-1)$$

 $T(n) \approx k_1 n + k_2$ linear polynomial in n
 $k_1 n \gg k_2 \longrightarrow T(n) \approx k_1 n$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{N} \left[\frac{f(a) + f(b)}{2} + \sum_{k=1}^{N-1} f\left(a + k \frac{b-a}{N}\right) \right]$$

What about the I/O?

In 33 Mhz 486 PC (linux) and gcc compiler

A multiplication takes a microsecond printf about 300 microseconds

On faster systems, the ratios may be worse, with the arithmetic time decreasing I/O times remaining the same

Estimation of the time

$$T(n) = T_{calc}(n) + T_{i/o}(n)$$

Parallel Program Performance Analysis

$$T_{\pi}(n,p)$$
 denotes the runtime of the parallel solution with p processes.

Speedup of a parallel program:

$$S_{\pi}(n,p) = \frac{T_{\sigma}(n)}{T_{\pi}(n,p)}$$

Ambiguous definition

Is $T_{\sigma}(n)$ the fastest known serial program? or $T_{\sigma}(n) = T_{\pi}(n,1)$ $0 < S(n, p) \le p$

S(n,p)=p linear speedup (very rare)

Efficiency of a parallel program:

$$E_{\pi}(n,p) = \frac{S(n,p)}{p} = \frac{T_{\sigma}(n)}{pT_{\pi}(n,p)}$$

Efficiency is a measure of process utilitization in a parallel program, relative to the serial program. $E_{\pi}(n,p) = \frac{S(n,p)}{p} = \frac{T_{\sigma}(n)}{pT_{\pi}(n,p)} \begin{cases} 0 < \dot{E}(n,p) \leq 1 \\ E(n,p) = 1 \end{cases}$ linear speedup (very rare) E(n, p) < 1/p slowdown

The Cost of Communication

For a reasonable estimatation of the performance of a parallel program, we should count also the cost of communication.

$$T(n,p) = T_{calc}(n,p) + T_{i/o}(n,p) + T_{comm}(n,p)$$

While the cost of sending a single message containing k units of data will be:

$$t_s + k t_c$$

t_s is called message **latency**

 $\frac{1}{2}$ is called **bandwidth**

The Example: The Parallel Trapezoidal Rule

```
Serial:

h = (b-a)/n;
integral = (f(a)+f(b))/2.0;
x = a;
for (i=1; i <=n-1; i++){
x = x + h;
integral = integral + f(x);
c_{2}
integral = integral * h;
```

```
Serial:  h = (b-a)/n;  integral = (f(a)+f(b))/2.0;   x = a;  for (i=1; i <=n-1; i++){  x = x + h;  integral = integral + f(x); }  c_2  integral = integral * h;
```

MACS Taking Timings

Amdahl's Law

 $0 \le r \le 1$ is the fraction of the program that is perfectly parallelizable

$$S(p) = \frac{I_{\sigma}}{(1-r)T_{\sigma} + rT_{\sigma}/p} = \frac{1}{(1-r) + r/p}$$

$$\frac{dS}{dp} = \frac{r}{[(1-r)p + r]^{2}} \ge 0$$

$$\lim_{p \to \infty} S(p) = \frac{1}{1-r}$$

Example: if r = 0.5 the maximum speedup is 2

Wacs Work and Overhead

The amount of work done by a serial program is simply the runtime:

$$W_{\sigma}(n) = T_{\sigma}(n)$$

The amount of work done by a parallel program is the sum of the Amounts of work done by each process:

$$W_{\pi}(n,p) = \sum_{q=0}^{p-1} W_{q}(n,p)$$

Thus, an alternative definition of efficiency is:

$$E(n,p) = \frac{T_{\sigma}(n)}{pT_{\pi}(n,p)} = \frac{W_{\sigma}(n)}{W_{\pi}(n,p)}$$

Work and Overhead

Overhead is the amount of work done by the parallel program that is not done by the serial program:

$$T_o(n,p) = W_{\pi}(n,p) - W_o(n) = pT_{\pi}(n,p) - T_{\sigma}(n)$$

per-process overhead: difference between the parallel runtime and the ideal parallel runtime that would be obtained with linear speedup:

$$T'_{o}(n,p) = T_{\pi}(n,p) - T_{\sigma}(n)/p$$

 $T_{o}(n,p) = pT'_{o}(n,p)$

Main sources of Overhead: communication, idle time and extra computation

Scalability ---