
Performance Analysis in 
Parallel Programming

Ezio Bartocci, PhD

SUNY at Stony Brook

January 13, 2011



Today’s agenda

 Serial Program Performance
 An example in the cable
 I/O statements
 Taking times

 Parallel Program Performance Analysis
 The cost of communication
 Amdahl's Law
 Work and Overhead
 Sources of Overhead
 Scalability

Agenda



Performance of a Serial Program 
Introductions

Definition of Running Time:

Let be T(n) units the running time of a program. 

The actual time depends on:

 the hardware being used
 the programming language and compiler
 details of the input other than its size

Example of Trapezoidal Rule:

h = (b-a)/n;
integral = (f(a)+f(b))/2.0;
x = a;
for (i=1; i <=n-1; i++){

x = x + h;
integral = integral + f(x);

}
integral = integral * h;

 

a b
h

c
1

c
2

c
1

T n ≈k1 n

T n ≈k1 n+k2

T n  =c1+c 2 n−1 

k 1n≫ k2

linear polynomial in n



What about the I/O ?
Introductions

In 33 Mhz 486 PC (linux) and gcc compiler
A multiplication takes a microsecond
printf about 300 microseconds

On faster systems, the ratios may be worse,
with the arithmetic time decreasing
I/O times remaining the same 

Estimation of the time

T n  =Tcalc n +T i /o n 



Parallel Program Performance Analysis

Introductions

T n , p
denotes the runtime of the parallel solution with 
p processes.

Speedup of a parallel program:

S n , p=
T n

T n , p

Efficiency of a parallel program:

En , p=
S n , p

p
=

T n

pTn , p

Ambiguous definition
T nIs the fastest known serial program ?

or T n=T n ,1
0S n , p≤p
S n , p=p linear speedup (very rare)

Efficiency is a measure of process utilitization 
in a parallel program, relative to the serial program. 
0E n , p ≤1
E n , p =1 linear speedup (very rare)
E n , p 1/ p slowdown



The Cost of Communication
Introductions

For a reasonable estimatation of the performance of a parallel 
program, we should count also the cost of communication.  

T n , p=T calc n , pT i /on , p T commn , p

While the cost of sending a single message containig k units of data will be:

t sk tc

t s is called message latency

1
t c

is called bandwidth



The Example: The Parallel Trapezoidal Rule

Introductions

Serial:

h = (b-a)/n;
integral = (f(a)+f(b))/2.0;
x = a;
for (i=1; i <=n-1; i++){

x = x + h;
integral = integral + f(x);

}
integral = integral * h;

 

c
1

c
2

c
1

Serial:

h = (b-a)/n;
integral = (f(a)+f(b))/2.0;
x = a;
for (i=1; i <=n-1; i++){

x = x + h;
integral = integral + f(x);

}
integral = integral * h;

 

c
1

c
2

c
1



Taking Timings
Introductions



Amdahl's Law
Introductions

S  p=
T

1−r TrT  / p
=

1
1−r r / p

dS
dp

=
r

[1−r  pr ]2
≥0

lim p∞ S  p=
1

1−r

0≤r≤1 is the fraction of the program that is perfectly parallelizable

Example: if r =0.5 the maximum speedup is 2



Work and Overhead
Introductions

The amount of work done by a serial program is simply the runtime:

W  n=T  n

The amount of work done by a parallel program is the sum of the 
Amounts of work done by each process: 

W n , p=∑q=0

p−1
W q n , p

Thus, an alternative definition of efficiency is:

E n , p =
T n

pT n , p
=

W n

W n , p



Work and Overhead
Introductions

Overhead is the amount of work done by the parallel program that 
is not done by the serial program:

T on , p =W  n , p−W o n=pT n , p −T n

per-process overhead:  difference between the parallel runtime and 
the ideal parallel runtime that would be obtained with linear speedup:

T ' o n , p=T n , p −T  n/ p
T on , p=pT ' on , p

Main sources of Overhead: communication, idle time and extra 
computation



Scalability
Introductions


	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12

