
The Lure of the Rings
Circle and Torus Flows in Biology

Bard Ermentrout

Lehman College

January 2013

The Lure of the Rings – p.1/??



Introduction

Many examples of patterns in Nature

Here I am interested in the onset of
spontaneous temporal order between
individuals

I will use simple differential equations to
illustrate this

As I go on, I will make this precise
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Fireflies: A dramatic example
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Properties

Males congregate in large groups at dusk

Within hours whole system synchronizes

Global synch from local synch

Why?

competition?

searchlight?

jamming?
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How good is synchrony?

Pteroptyx malaccae isolated flash is almost
indistinguishable from population rhythm

single collective

1 second
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Easy to entrain

P. cribellata L. pupilla P. malaccae
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Aside # 1: PRCs

Biological rhythms are governed by nonlinear
oscillators
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The Phase-resetting curve (PRC) is defined
as

∆(φ) = 1−
P ′(φ)

P
, φ ≡

s

P

tells us how an oscillator is changed due to
the timing of inputs.
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PRCs are different
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P. malaccae entrainment
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A simple model for entrainment

Let θ be the phase of the firefly and let ω = 1 be
his natural frequency. Let ωz be the frequency at
which he is forced. Assume he adjusts his speed
proportionally to the phase difference (averaging)
Since his response is roughly sinusoidal, we
write:

dθ

dt
= 1 + a sin(2π(ωzt− θ))

Note without a, he marches around the circle of

circumference 1, once per second.
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Analysis of entrainment

Let φ = θ − ωzt be his relative phase with respect to the stimulus so

that, eg φ = .25 means he leads the stimulus by a quarter of a cycle.

dφ

dt
= 1− ωz − a sin 2πφ

d    /dtφ
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Analysis of walkthrough

What is the period of walk-through?

Walk-through occurs when |1− ωz | > a, so, φ(t) moves

continuously around the circle.

T is the time to go from 0 to 1:

T =

∫

1

0

dφ

1− ωz − a sin 2πφ
=

1
√

(1− ωf )2 − a2

Period of walkthrough at 1.33 Hz is about 35 seconds, so

a ≈ 0.328 which implies that when Tf = 800 msec that φ ≈ 0.18.

This is a little high. (PM actually alters ω.)
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Simulation of walkthrough
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Finger tapping

Task: tap two fingers in syncopation
(alternately) while following a metronome

As frequency goes up, it becomes impossible
and subjects switch to synchrony

Analogous to how a dog or horse switches
gaits from a walk to a trot to a gallop as she
attempts to run faster
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Experimental data
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Central pattern generators

Groups of neurons in CNS responsible for
rhythmicity.

Left-right (or, front-back) are considered
oscillators coupled together.

Simple phase-models from neurons change
shape with frequency

dθL
dt

= ω +H(θR − θL;ω)

dθR
dt

= ω +H(θL − θR;ω)
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Analysis

As with the FFs let φ = θL − θR:

dφ

dt
= H(−φ;ω)−H(φ;ω) ≡ g(φ;ω)

For simplicity:

g(φ) = − sin 2πφ− b(ω) sin 4πφ

where b(ω) decreases as ω increases.
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Phase-space

d   /dtφ
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Hand clapping

Eastern European audiences drift between synchronous

and asynchronized hand clapping:
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Mechanisms?

At low frequencies, they synchronize – but the
individual range is also much tighter

At high frequencies, asynchronous – range of
frequencies is broader

Two possibilities

Broader range is harder to synchronize

Higher frequencies are harder to
synchronize
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Excitatory coupling

Suppose clapping is generated by a CPG and the sound acts to

couple different clappers.

What kind of coupling leads to destabilizing synchrony as the

frequency increases?

Mutual excitation can do this.

Let φ be the phase-difference between two clappers (as with the

tapping)

dφ

dt
= a(ω) sin 2πφ− b sin 4πφ

As ω increases a(ω) changes from negative to positive.
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Phase-space again!

d   /dtφ
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Alternate mechanism

Assume that interaction is insensitive to
frequency

Range of frequencies is broader when higher

Simple model for φ = θ1 − θ2:

dφ

dt
= k(ω1 − ω2)− a sinφ

k = 1, entrain, but k = 2 (double frequency),
don’t entrain!
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Aside 1:here’s the beef

CPG’s consist of neural oscillators; assume they have PRC

Assume coupling is “weak”

Then averaging allows us to reduce to phase models:

θ′j = ωj +
∑

k

Hjk(θk − θj)

where (roughly)

H(φ) =
1

T

∫ T

0

∆(t)S(t+ φ) dt

∆(t) is the PRC and S(t) is signal from the other oscillator(s)

Odd part of H determines pairwise synchrony
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Aside 2: Details
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More than two???

For N = 2, odd part of H is the whole show

For “all-to-all”, odd part is most of the show

For all other cases, “fugedaboutit”
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One-dimensional arrays

Consider

θ′i = ωi+A+H(θi+1−θi)+A−H(θi−1−θi), i = 1, . . . , N

K & E proved that as N → ∞

Ω = ω(x) + f(φ) +
1

N
g(φ)x

Ω = ω(0) + A+H[φ(0))]

Ω = ω(1) + A−H[−φ(1)]

Singularly perturbed two-point BVP
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Boundary layers and asymmetry

For purely “odd” coupling, trivial

a0 + a1 cos(x) + sin(x) behaves differently
depending on relative sizes of a0, a1.

For symmetric coupling, layer is in interior

Asymmetries – layers at edges

Gradients also break symmetry and produce
bndry layers
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Example
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Remarks etc

For H(u) = c+ g(u), g(φj) = c(N − 2j)/N (parabolic)

For H(u) = f(u) + g(u), φj ≈ Ksign(j −N/2) (linear)

Layer is sloppy – heterogeneities move it
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Stability

THEOREM (Ermentrout ’94) Let {φ1, . . . , φN} be a
phaselocked solution to

θ′i = ωi +Hi(θ1 − θi, . . . , θN − θi)

and cij = ∂Hi/∂uj evaluated at the soln. If cij ≥ 0

and the matrix C = (cij) is irreducible, then the

soln is orbitally asymptotically stable.
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Two- and higher dimensional lattices

THEOREM (Ren & Ermentrout, ’97). Suppose we
have a nearest neighbor coupled system in
m > 1 dimensions and fix all but one of the
coordinates. Then the phase-differences along
that one-dimensional system are the same as
that of the corresponding one-dimensional chain.
That is, if

θ′ij = ω +HX,+(θi+1,j − θi,j) + . . .

then

θij = Ωt+ Φi +Ψj
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Consequences of the theorem

Bullseyes: If H(u) = g(u) + C

θx ≈ 2K(x− 1/2) θy ≈ 2K(y − 1/2)

and

θ ≈ Ωt+K[(x− 1/2)2 + (y − 1/2)2]

Squares: If H(u) = f(u) + g(u)

θx ≈ Ksign(x−
1

2
) θy ≈ Ksign(y −

1

2
)

and

θ ≈ Ωt+K(|(x− 1/2)|+ |y − 1/2|)
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Example I. Isotropy
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Example II. Various anisotropies
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Is that all there is?

These patterns are homotopic to synchrony

Driven by boundary effects

Are there non-trivial patterns?
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Is that all there is?

These patterns are homotopic to synchrony

Driven by boundary effects

Are there non-trivial patterns?

Simplest nontrivial pattern on 4× 4 lattice with sine coupling:

0 ξ π/2− ξ π/2

−ξ 0 π/2 π/2 + ξ

3π/2 + ξ 3π/2 π π − ξ

3π/2 3π/2− ξ π + ξ pi

where cos 2ξ = 2 sin ξ.

An asymptotically stable rotating wave!
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Then what?

THEOREM (Paulett & GBE, 1992)

H(u) is an odd periodic and H ′(u) > 0 for u ∈ (−π/2, π/2)

θ′ij = ω +
∑

{i′j′}∈NN

H(θi′j′ − θij), i, j = 1, . . . , 2m

Then, there exists an asymptotically stable rotating wave.
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Non-odd terms matter

Add even terms which vanish at 0 so there are no boundary

effects

Leads to a twisting of the isophase lines

Spiral waves rather than rotors

As relative power of even terms increases, “core” lose stability

Hopf bifurcation leads to “wobble”

Zero eigenvalue leads to drift

Eventually chaotic motion
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Examples
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What about 3D?

Stack the 2D spirals together to form a scroll
wave.

Can nontrivial 3D patterns occur?

Problems

In discrete models, twisted scrools etc can
develop large phase gradiuents

Must increase range over which H ′(φ) > 0.

E.g. H(φ) = sinφ− a sin 2φ with
0 < a < 1/2.
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Tilted scrolls with a = 0.3
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