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What most likely happens

THAT LIMNE OF QODE
GIVES ME GAS




991 lines of code
5597 words
37448 characters (without blanks)
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After abstracting the Javascript

Y

"

"
(e y

Yy o Ly » Sy

L amaaah o L « L e A '

"Wy e @ . "mYY Y

ey wo-n

" ¢ - we-n
s -
Aald
"t Yy

Y
mnw
T
"y

perem b
-y ey
b o bl o [ YT

[rsa— WA
Woepresesen oy . e

LAl SRR
LR ALEY

Yot ———

TRy
LA R LI T
"ew
e

yoye.
"y
"o . .-y
"y oy
ey -
"o . R
— gy Seae ——trme mree

"y . -—— -y =P T ey
ke

AT L
Yooy




And then after abstracting the Webgl / shader







Why Webgl / Why Shader ?

Code of this type runs on a GPU:
Allowing the CPU to do other work.
GPU's are optimized to handle high level
calculations.

Parallel

Code that is able to handle data points and calculations
in parallel within a good amount of speed ... within the
BROWSER !

Project/environment setup time is less

Able to run almost everywhere (internet is a plus)



Why in parallel ?

Lets get some background info .....



Loops (i.e. for, while, do,etc)

What are loops ?



In Biology

A form of cellular mitosis

Mitosis . Parent cell Meiosis Farent cell
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In mathematics

lteration




What we want to see
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In Physics

A form of boringness

Insanity: S
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f J..'c'-:‘:d.‘.

| U AR
cmd expecﬂng different results.

'I [
.'._r“l Q. * -y

B8 M Albert Einstein

s
i
S
S



Okay okay, back to the parallel topic

Why do we want to do things in parallel ?

By breaking down sequential algorithms into
smaller calculations, that have little to no
dependences on each other, you allow them
to become parallel algorithm(s).

Once the algorithm is in parallel form, the
calculations can be optimized by removing it
from a loop (i.e. sequential processing) and

introducing parallelism.



What do we gain by doing this ?
, which to a computer scientist
means a speedup !




What does this represent 7

i







This is important because it has a pattern




if n = 0:
if n =1

Fin—1)+F(n—-2) ifn>1

public int Fibonacci(int n)
{
if (n <2)
return n;
else
return Fibonacci(n - 1) + Fibonacci(n - 2);
}



Patterns

Can exist within

Numbers & Geometrics

How about with a procedure ? As in a procedural pattern:
# a particular way of accomplishing something or of acting

# a series of steps followed in a regular definite order



Euler's Method

= Yn T+ h - f(t"-? yn,)

Lets try one:

Use Euler's method with step size x =.1to
estimate y(.5) where y(x) is the solution of the
initial value problem, y(0)=3,

y ' = f(Xa,yn) = 3%% (2-y).




J

3x42 —y)

- ,,‘yn—l + A\ . f"('x.u—l ) )r”_l ’

2
D

0

2
D

—0.03

2.997

2.997

—0.11964

2.985036

2.985036

—0.265959

2.9584400

2.958440

—0.460051

2.912434

2.912434

—0.684326

2.844002

2.844002

—0.911522

2.752850

2.752850

—1.106689

2642

2.642181

2.518882

2.518882

—1.260884

2.392793

2.392793




Should we make a procedure like this
parallel or sequential ?



Lets try to implement Euler's Method ...



Some code ...

~
4]
~
4]
~
3

rintln("y

rintln():

Just an example



Going Deeper

We now want to get deeper into the code.
We are going to download exercises.

Look for patterns in the code that will
optimize it as well as readabillity.

(Remember abstraction can be your friend)

Exercise one CLB.CharlesB@gmail.com



Before 29¢ —|function draw() {

for(var i = 0; i < nit; i++){

gl.useProgram(prog0) :

gl.uniformili (locO, 4):
.bindFramebuffer (gl.FRAMEBUFFER, FBOO) :;
.drawArrays (gl.TRIANGLE STRIP, 0, 4):
.flush():
.useProgram(progl) ;
.uniformli(locl, 4):;
.bindFramebuffer (gl.FRAMEBUFFER, FBO1l):
.drawArrays (gl.TRIANGLE STRIP, 0, 4):
.flush():
.useProgram(prog2) :
.uniformli(loc2, 4):
.bindFramebuffer (gl.FRAMEBUFFER, FBO2) :;
.drawArrays (gl.TRIANGLE STRIP, 0, 4):
.flush():
.useProgram(prog3) ;
.uniformli(loc3, 4):;
.bindFramebuffer (gl. FRAMEBUFFER, FBO3):
.drawArrays (gl.TRIANGLE STRIP, 0, 4):
.flush():
.useProgram(prog4) ;
.uniformli(loc4, 4):;
.bindFramebuffer (gl.FRAMEBUFFER, FBOS):;
.drawArrays (gl.TRIANGLE STRIP, 0, 4):
.flush():

.useProgram(prog0) ;

.uniformli(locO0, 5):;

.bindFramebuffer (gl.FRAMEBUFFER, FBOQO) :;
.drawArrays (gl.TRIANGLE STRIP, 0, 4):
.flush():

.useProgram(progl) ;

.uniformli(locl, 5):




[l function draw() {
var setlLength = 5;
var progSet = [prog0,progl,prog2,prog3,prog4]:
var locSet = [locO,locl,loc2,loc3,loc4d]:
var FBOSet = [FBCO,FBO1l,FBO2,FB0O3,FB04,FB0OS5];
H for(var i = 0; i < nit; i++){

for(var innerIndex=0; innerIndex< setLength; innerIndex++) {
gl.useProgram(progSet[innerIndex]):
gl.uniformli (locSet[innerIndex], 4):
if(innerIndex=—=4) {
gl.bindFramebuffer (gl.FRAMEBUFFER, FBOSet|[innerIndex+l1l]):
}else{
gl.bindFramebuffer (gl. FRAMEBUFFER, FBOSet|[innerIndex]):
}
gl.drawArrays(gl.TRIANGLE STRIP, 0, 4):
gl.flush():
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for(var innerIndex=0; innerIndex< setLength; innerIndex++) {
gl.useProgram(progSet[innerIndex]):
gl.uniformli (locSet[innerIndex], 5):
gl.bindFramebuffer (gl.FRAMEBUFFER, FBOSet[innerIndex]):
gl.drawArrays(gl.TRIANGLE STRIP, 0, 4):
gl.flush():




Why is this important ?
Because now you have a better
understanding and working knowledge of:

Iteration within code
Being able to follow a procedure within a
loop
Recognizing patterns within code
Converting procedures into code (eveniraready codeq)



Is the code we just modified optimized,
readable, or both 7



Going Further

Now that we all have the skills we need, lets look
at the paper(s), it's algorithms, and the code .....



A model for human ventricular tissue

21286 H1573-H1589, 2004
10.1152/ajpheart 00794 2003

Am J Physial Heart Circ ys

First published December 4, 2003;
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Ten Tusscher, K. H W. J_, D. Noble, P. J. Noble, and A_ V.
Panfilov. A model for human ventricular tissue. Am J Physiol Heart
Circ Physiol 286: H1573-H1589, 2004. First published December 4,
2003: 10.1152/ajpheart 00794.2003.—The experimental and clinical
possibilities for studying cardiac arrhythmias in human ventricular
myocardium are very limited. Therefore, the use of alternative meth-
ods such as computer simulations is of great importance. In this article
we introduce a mathematical model of the action potential of human
ventricular cells that, while including a high level of electrophysio-

constramed to surface recordings. Computer smmulations of
arrhythmias 1in the human heart can overcome some of these
problems.

To perform smulation studies of reentrant arrhythomas mn
human ventricles we need a mathematical model that on the
one hand reproduces detailed properties of single human ven-
tricular cells, such as the major 1onic cwrents, calcium tran-
sients, and AP duration (APD) res ntunon (.nPDR) and 1 impor-

Let's open the paper "A Model For Human Ventricular Tissue"



MATERIALS AND METHODS
General

The cell membrane is modeled as a capacitor connected in parallel
with variable resistances and batteries representing the different ionic
currents and pumps. The electrophysiological behavior of a single cell
can hence be described with the following differential equation (23)

d [" [1::(1 - ['.l.m (1)
dt C.
where Vis voltage, tis time, [, is the sum of all transmembrane ionic
currents, L., is the externally applied stimulus current, and C,, is cell
capacitance per unit surface area.

Similarly, ignoring the discrete character of microscopic cardiac
cell structure, a 2D sheet of cardiac cells can be modeled as a
continuous system with the following partial differential equation (23)

aVv I +1 1 &V 1 &V

sum

(2)

at Co  pSCadl  pS,Caay

where p, and p, are the cellular resistivity in the x and y directions, S,
and S, are the surface-to-volume ratio in the x and y directions, and
L is the sum of all transmembrane ionic currents given by the
following equation

Lo =Ino + Iy + Lo + I + I + Lea + Baca + Rk

Ll lpz'x L [pK + [l:‘:.n + [b,‘h

(3)

where Iy.c. Is Na*/Ca®?* exchanger current, Jy.k is Na*/K* pump
current, I, and Lk are plateau Ca?* and K* currents, and /¢, and
Ik are background Ca®?* and K* currents.
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Cral
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Sarcoplasmic reticulum volume

Extracellular K* concentration

Extracellular Na* concentration

Extracellular Ca?* concentration

Maximal /j, conductance

Maximal /k; conductance

Maximal epicardial %, conductance

Maximal endocardial [, conductance

Maximal Jk. conductance

Maximal epi- and endocardial ks
conductance

Maximal M cell Ik, conductance

Relative Jx. permeability to Na®

Maximal Jcai. conductance

Maximal naca

Voltage dependence parameter of Maca

Ca, half-saturation constant for Mnaca

Na, half-saturation constant for Inaca

Saturation factor for Jy.ca

Factor enhancing outward nature of
Il\'n( a

Maximal /nak

Ko half-saturation constant of nak

Na, half-saturation constant of M.k

Maximal Ik conductance

Maximal /i, conductance

Ca, half-saturation constant of Jca

Maximal Jina conductance

Maximal Juca conductance

Maximal /.

Half-saturation constant of I,

Maximal Casg-dependent I

Cagp half-saturation constant of [y

Maximal Casg-independent I

Maximal Jicax

Total cytoplasmic buffer concentration

Under Materials And Methods
on page 2 (in PDF form)

1,094 pm’
54 mM

140 mM

2 mM
14.838 nS/pF
5.405 nS/pF
0.294 nS/pF
0.073 nS/pF
0.096 nS/pF
0.245 nS/pF

0.062 nS/pF
0.03

1.75"% em®pF
1,000 pA/pF
0.35

1.38 mM
87.5 mM

0.1

2.5

L.

1 1

S

1.362 pA/pF

1 mM

40 mM

0.0146 nS/pF
0.025 nS/pF
0.0005 mM
0.00029 nS/pF
0.000592 nS/pF
0.000425 mM/ms
0.00025 mM
16.464 mM/s
0.25 mM

8.232 mM/s
0.00008 ms!
0.15 mM




Table 1.

Parameter

Gro, epi, M

G, endo

Gk

Cks epi,
endo

Gks, M

PKNa

Y
Kinca
Kinna
Kat

«

Prak
Kk
Kinnia

Gk

Gica

drel
brel
Crel
H. 1k
Buf,
[\! ufc

Buf,

Khufse

Model parameters

Definition

Gas constant
Temperature
Faraday constant
yacitance per unit surface area

Surface-to-volume ratio
Cellular resistivity
Cytoplasmic volume
Sarcoplasmic reticulum volume
Extracellular K™ concentration
Extracellular Na* concentration
Extracellular Ca?* concentration
Maximal 7y, conductance
Maximal /i, conductance
Maximal epicardial /o conductance
Maximal endocardial /, conductance
Maximal /<, conductance
Maximal epi- and endocardial /x

conductance
Maximal M cell /ks conductance
Relative Jks permeability to Na™*
Maximal Jcar. conductance
Maximal Iy

Voltage d(‘pond(‘n( e parameter of In.ca

Ca, half-saturation constant for Inaca

Na, half-saturation constant for Inaca

Saturation factor for INaca

Factor enhancing outward nature of
Inaca

Maximal
Ko half-saturation constant of Inak
Na; half-saturation constant of Inak
Maximal [k conductance
Maximal /¢, conductance
Ca, half-saturation constant of I,c,
Maximal Jna conductance
Maximal Jca conductance
Maximal L
Half-saturation constant of I,
Maximal Casg-dependent [,
“asr half-saturation constant of e
Maximal Casr-independent fa
Maximal feak
Total cytoplasmic buffer concentration
Ca, half-saturation constant for
cytoplasmic buffer

Total sarcoplasmic buffer
concentration

Casr half-saturation constant for
sarcoplasmic buffer

Value

3 JK
310 K
96.4867 C/mmol
2 p.Flem?
0.2 pm~!
162 {cm
16,404 pm?
1,094 pm?
54 mM
140 mM
2 mM
14.838 nS.v'pF
5.405
() Z‘M

Lmol

1, 000 pA/pF
0.35
1.38 mM

1.362 pA/pF

1 mM

40 mM

0.0146 nS/pF

).025 nS/pF
0.0005 mM

0 0(1 9 nS/|
0.000425 mM/ms

0.00025 mM
16.464 mM/s

(]4 15 mM
0.001 mM

10 mM

0.3 mM

1




where p, and p, are the cellular resistivity in the x and y directions, S,
and S, are the surface-to-volume ratio in the x and y directions, and
L 1s the sum of all transmembrane ionic currents given by the

following equation
1.::(’) = [.‘\'2] + [:\". + 1'.() - [K_' + [K'. - 1(‘;][ - [‘\'x:‘u + 1,\\‘1}(

L 1;':‘1 - IpK + 1[;‘:';1 + [l:-.\}

(3)

where Iy.c. Is Na*/Ca®?* exchanger current, Jy.k is Na*/K* pump
current, Ic, and Lk are plateau Ca?* and K* currents, and /,c, and
Ik are background Ca?* and K* currents.

Physical units used in our model are as follows: time (f) in
milliseconds, voltage (V) in millivolts, current densities ([x) in pico-
amperes per picofarad, conductances (Gx) in nanosiemens per pico-
farad, and intracellular and extracellular ionic concentrations (X;, X.)
in millimoles per liter. The equations for the ionic currents are
specified in Membrane Currents.

For one-dimensional (1D) computations cell capacitance per unit
surface area is taken as C,,, = 2.0 uF/cm? and surface-to-volume ratio
is set to S = 0.2 um!, following Bernus et al. (3). To obtain a
maximum planar conduction velocity (CV) of 70 cm/s, the velocity
found for conductance along the fiber direction in human myocardium
by Taggart et al. (61), a cellular resistivity p = 162 {lcm was required.
This is comparable to the p = 180 {lcm used by Bernus et al. (3) and
the p = 181 {)cm used by Jongsma and Wilders (29), and it results in
a “diffusion” coefficient D = 1/(pSC,,) of 0.00154 cm?/ms. Because
in 2D we did not intend to study the effects of anisotropy, we use the
same values for p.and p, and for S, and S,. Parameters of the model
are given in Table 1.

For 1D and 2D computations, the forward Euler method was used
to integrate Eq. 1. A space step of Ax = 0.1-0.2 mm and a time step
of At = 0.01-0.02 ms were used. To integrate the Hodgkin-Huxley-
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Na, half-saturation constant of ik

Maximal Ik conductance

Maximal /i, conductance

Ca, half-saturation constant of Jca

Maximal Jyna conductance

Maximal Jiuc, conductance

Maximal /.y

Half-saturation constant of I

Maximal Casg-dependent I

Cagg half-saturation constant of [y

Maximal Casg-independent L

Maximal Jicax

Total cytoplasmic buffer concentration

Ca, half-saturation constant for
cytoplasmic buffer

Total sarcoplasmic buffer
concentration

Casg half-saturation constant for
sarcoplasmic buffer

40 mM

0.0146 nS/pF
0.025 nS/pF
0.0005 mM
0.00029 nS/pF
0.000592 nS/pF
0.000425 mM/ms
0.00025 mM
16.464 mM/s
0.25 mM

8.232 mM/s
0.00008 ms !
0.15 mM

0.001 mM

10 mM

0.3 mM

We test the accuracy of our numerical simulations in a cable of
cells by varying both the time and space steps of integration. The
results of these tests are shown in Table 2. From Table 2 it follows
that, with a Ax = 0.2 mm, decreasing At from 0.02 to 0.0025 ms leads
to a 3.7% increase in CV. Similarly, with At = 0.02 ms, decreasing Ax
from 0.2 to 0.1 mm leads to a an increase in CV of 4.6%. The changes
in CV occurring for changes in space and time integration steps are
similar to those occurring in other models (see, for example, Ref. 52).
The time and space steps used in most computations are At = 0.02 ms
and Ax = 0.2 mm, similar to values used in other studies (3, 6, 52, 69).
Major conclusions of our model were tested for smaller space and
time steps; the results were only slightly different.

We want to better under what makes up Iion




where p, and p, are the cellular resistivity in the x and y directions, S,
and S, are the surface-to-volume ratio in the x and y directions, and
L 1s the sum of all transmembrane ionic currents given by the
following equation

Lo - I + k. + hca + Rk (3)
+ 1

p(‘x - IpK + 1[;‘:';1 + [l:-.\}

where Iy.c. Is Na*/Ca®?* exchanger current, Jy.k is Na*/K* pump
current, Ic, and Lk are plateau Ca?* and K* currents, and /,c, and
Ik are background Ca?* and K* currents.

Physical units used in our model are as follows: time (f) in
milliseconds, voltage (V) in millivolts, current densities ([x) in pico-
amperes per picofarad, conductances (Gx) in nanosiemens per pico-
farad, and intracellular and extracellular ionic concentrations (X;, X.)
in millimoles per liter. The equations for the ionic currents are
specified in Membrane Currents.

For one-dimensional (1D) computations cell capacitance per unit
surface area is taken as C,,, = 2.0 uF/cm? and surface-to-volume ratio
is set to S = 0.2 um!, following Bernus et al. (3). To obtain a
maximum planar conduction velocity (CV) of 70 cm/s, the velocity
found for conductance along the fiber direction in human myocardium
by Taggart et al. (61), a cellular resistivity p = 162 {lcm was required.
This is comparable to the p = 180 {lcm used by Bernus et al. (3) and
the p = 181 {)cm used by Jongsma and Wilders (29), and it results in
a “diffusion” coefficient D = 1/(pSC,,) of 0.00154 cm?/ms. Because
in 2D we did not intend to study the effects of anisotropy, we use the
same values for p.and p, and for S, and S,. Parameters of the model
are given in Table 1.

For 1D and 2D computations, the forward Euler method was used
to integrate Eq. 1. A space step of Ax = 0.1-0.2 mm and a time step
of At = 0.01-0.02 ms were used. To integrate the Hodgkin-Huxley-
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Na, half-saturation constant of ik

Maximal Ik conductance

Maximal /i, conductance

Ca, half-saturation constant of Jca

Maximal Jyna conductance

Maximal Jiuc, conductance

Maximal /.y

Half-saturation constant of I

Maximal Casg-dependent I

Cagg half-saturation constant of [y

Maximal Casg-independent L

Maximal Jicax

Total cytoplasmic buffer concentration

Ca, half-saturation constant for
cytoplasmic buffer

Total sarcoplasmic buffer
concentration

Casg half-saturation constant for
sarcoplasmic buffer

40 mM

0.0146 nS/pF
0.025 nS/pF
0.0005 mM
0.00029 nS/pF
0.000592 nS/pF
0.000425 mM/ms
0.00025 mM
16.464 mM/s
0.25 mM

8.232 mM/s
0.00008 ms !
0.15 mM

0.001 mM

10 mM

0.3 mM

We test the accuracy of our numerical simulations in a cable of
cells by varying both the time and space steps of integration. The
results of these tests are shown in Table 2. From Table 2 it follows
that, with a Ax = 0.2 mm, decreasing At from 0.02 to 0.0025 ms leads
to a 3.7% increase in CV. Similarly, with At = 0.02 ms, decreasing Ax
from 0.2 to 0.1 mm leads to a an increase in CV of 4.6%. The changes
in CV occurring for changes in space and time integration steps are
similar to those occurring in other models (see, for example, Ref. 52).
The time and space steps used in most computations are At = 0.02 ms
and Ax = 0.2 mm, similar to values used in other studies (3, 6, 52, 69).
Major conclusions of our model were tested for smaller space and
time steps; the results were only slightly different.

We want to better under what makes up Iion




HUMAN VENTRICULAR AP MODEL

Table 2. Numerical accuracy of conduction velocity for

different At and Ax

Conduction Velocity, cm/s

Ax, cm Ar = 0.0025 ms Ar = 0.005 ms At =001 ms Ar =002 ms

0.010
0.015
0.020
0.030
0.040

75.0
73.8
71.5
67.4
63.0

74.2
73.0
70.8
66.8
62.6

[=r B e B B B
—n D N
SN

applied at a frequency of 1 Hz and a strength of two times the
threshold value, followed by a S2 extrastimulus delivered at some
diastolic interval (DI) after the AP generated by the last S1 stimulus.
The APDR curve is generated by decreasing DI and plotting APD
generated by the S2 stimulus against DI. The second restitution
protocol is called the dynamic restitution protocol. It was first pro-
posed by Koller et al. (32) as being a more relevant determinant of
spiral wave stability than S1-S2 restitution. The protocol consists of a
series of stimuli at a certain cycle length until a steady-state APD is
reached; after that, cycle length is decreased. The APDR curve is
obtained by plotting steady-state APDs against steady-state DIs. CV
restitution (CVR) was simulated in a linear strand of 400 cells by
pacing it at one end at various frequencies and measuring CV in the
middle of the cable.

Spiral waves were initiated in 2D sheets of ventricular tissue with
the S1-S2 protocol. We first applied a single S1 stimulus along the

H1575

Membrane Currents

Fast Na* current: In.. We use the three gates formulation of /n.
first introduced by Beeler and Reuter (1)

1\u = G\uﬂfh_ﬂ I_ [{_\'a] (‘])

where m is an activation gate, /7 is a fast inactivation gate, and j is a
slow inactivation gate. Each of these gates is governed by Hodgkin-
Huxley-type equations for gating variables and characterized by a
steady-state value and a time constant for reaching this steady-state
value, both of which are functions of membrane potential (see APPENDIX).

The steady-state activation curve (n72) is fitted to data on steady-
state activation of wild-type human Na?* channels expressed in
HEK-293 cells from Nagatomo et al. (44). Experimental data were
extrapolated to 37°. Because there is no equivalent to the Q1o values
used to extrapolate time constants to different temperatures, a linear
extrapolation was used based on a comparison of values obtained at
23° and 33°. Note that similar Na* channel activation data were
obtained by others (64, 40, 55). Figure 14 shows the steady-state
activation curve used in our model. For comparison, temperature-
corrected experimental data are added.

The steady-state curve for inactivation (h. X j.) is fitted to
steady-state inactivation data from Nagatomo et al. (44). Again, data
were extrapolated to 37°. Similar inactivation data were obtained by
others (55, 64). Figure 1B shows the steady-state inactivation curve
used in our model together with temperature-corrected experimental
data. Note that for resting membrane potentials the / and j gates are
partially inactivated.

The time constants 7, and 7, are derived from current decay

ol e o b EN o s S S fpa o oo

e

Under Membrane Currents
on page 3 (in PDF form)




Alternans and spiral breakup in a human ventricular

tissue model

K. H. W. J. ten Tusscher and A. V. Panfilov

Am J P, nuu! Heart Circ Physial 291:H1088-H1100, 2006. First published 24 March 2006;
doi: 10.1152/ajpheart.00109.2006

You might find this additional info useful...

['his article cites 65 articles, 25 of which you can access for free at:
http://ajpheart.physiology.org/content/291/3/H 1088. full #ref-list-1

[his ar has been cited 8 other HighWire-hosted articles:
: rg/content/291/3/H1088#cited-by

Updated information and services including high resolution figures, can be found at:
http://ajpheart.physiology.org/content/ 291/3/H1088.full

Additional material and information about American Journal of Physiology - Heart and Circulatory

Phpslology an be found at:
http://www.the-aps.org/publications/ajpheart

This information is current as of December 21, 2012.

Also open the paper
"Alternans and Spiral Breakup In a Human Ventricular Tissue Model"
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APPENDIX

No changes were made to formulations of the following currents:
IN;n Ilu\- IKP IK|~ IN.;(';n I.\'.IK~ Ip(';n I[‘K~ IhN;n and Ih(';r FO[’ these
formulations, we refer to their description in the previous version of
our model (61).

L-Type Ca’" Current

(V= 15)F 0.25Ca.e2" PR _ Cq |
[(,’u: = G(f;nl d.r.r:.f\:z.'.'l T W (0)

Under Appendix
on page 12 (in PDF form)



APPENDIX

No changes were made to formulations of the following currents:
IN;n Ilu\- IKP IK|~ IN.;(';n I.\'.IK~ Ip(';n I[‘K~ IhN;n and Ih(';r FO[’ these
formulations, we refer to their description in the previous version of
our model (61).

L-Type Ca’" Current

(V— 15)F% 0.25Cag ™" 9" _ Ca

Ccalfffott —pr— — pvmmm —7; (0

Under Appendix
on page 12 (in PDF form)
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data_df.push( 1./(1.+Math.exp((-8.-vv)/7.5)) ):
var Ad=1.4/(1.+Math.exp((-35.-vv) /13.))+0.25;
var Bd=1.4/(1.+Math.exp((vv+5.)/5.)):

var Cd=1./(1.+Math.exp((50.-wvv) /20.)):

data df.push( dt/(Rd*Bd+Cd) ):

data df.push( 1. /(L.+Math.exp((vv+20.) /7. ):
var Af=1102.5%Math.exp(—(vv+27.) *(vv+27. )/ i
var Bf=200./(1.+Math.exp((13.-wvv) /10.)):

var Cf=(120./(1.+Math.exp((vv+30.)/10.)))+20.;
data_df.push( dt/ (Rf+Bf+Cf) )
data_fx. push( 0.87/(L.+Math.exp((vv+35.)
var : .*Math.exp(—(vv+27.) *(vv+27.)
var /J(1L.+Math.exp((25.-vv) /10.)):
var J(L.4Math.exp((vv+30.)/10.))
data_fx.pasn( dt/ (Rf2+Bf2+4Cf2) ) :

data_ fx.push( 1./(1.+Math.exp((-5.-vv)/14.)) ):
var Axs=(1400./(Math.sgrtc(l.+Math.exp((5.-vv) /6.
var Bxs=(1./(l.+Math.exp((vv-35.)/15.))):
data_fx.push( dt/(Axs*Bxs+20.) ):

/ ))+~'-

Cao=2.0 ,Nao=1
146 ,GK1=5.405,alphanaca=

KmNai3=KmNai*KmNai*KmNai, Nao3=Nao*Nao*Nao,
RR=8314.3,FF=%86486.7,TT=310.0

o,

rtof=(RR*TT) /FF, fort=l1./rtof:;

var temp=Math.exp(2*(vv-15.001) *fort)

data_iCa.push( GCaL*4.*(vv-15 001) * (FF*fort) *(0.25*%temp) / (temp-1
data_iCa.push( GCaL*4.*(vv—-15.001) * (FF*fort) *Cao/ (temp-1.) ):
temp=Math.exp((n-1.) *vv*xforct) ;

var temp2=knaca/ ((XmNai3+Nao3) * (KmCa+Cao) *(1.+ksat*temp)) ;

What do we notice here that can be matches in the paper(s) ?




Let's make code/implementations of our own
equations, which are based on the paper(s)

Exercise two CLB.CharlesB@gmail.com



Let's make notes & observations about the
code and how it relates to the equations ...

Compare the code you created and the
code in the draw and tau functions as
well as parameters and variables ....

Exercise three CLB_CharIesB@gmaiI.com



Thats it ....

Thank You



