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Abstract—One of the fundamental questions in the treatment
of ventricular cardiac disorders, such as tachycardia and fibril-
lation, is under what circumstances does such a disorder arise?
To answer to this question, we develop a multiaffine hybrid
automaton (MHA) cardiac-cell model, and restate the original
question as one of identification of the parameter ranges under
which the MHA model accurately reproduces the disorder. The
MHA model is obtained from the minimal cardiac model of one
of the authors (Fenton) by first bringing it into the form of a
canonical, genetic regulatory network, and then linearizing its
sigmoidal switches, in an optimal and global way. By leveraging
the Rovergene tool for genetic regulatory networks, we are then
able to successfully identify parameter ranges of interest.

I. INTRODUCTION

A fundamental question in the treatment of cardiac abnor-
malities, such as ventricular tachycardia and fibrillation [1]
(see Figure 1), is under what conditions does such a disorder
arise? To answer this question, in vitro and in vivo experi-
mentation is nowadays complemented with the mathematical
modeling, analysis and simulation of (networks of) cardiac
cells. Among the myriad existing models, (partial) differential-
equations models (DEMs) are arguably the most popular.

The past two decades have witnessed the development of
increasingly sophisticated DEMs, which unravel in great detail
the underlying genomic and proteomic processes [2], [3],
[4], [5]. Such models are essential in the understanding of
the molecular interactions, and in the development of novel
treatment strategies. However, they also have two significant
drawbacks: 1) They often contain too many parameters to
be reliably and robustly identified from experimental data.
2) They are often too complex to render their formal analysis
or even simulation tractable. We refer to such models as
detailed molecular models (DMMs).

Approximation (or abstraction) is a well-established tech-
nique in science and engineering for dealing with complexity.
In dynamical systems possessing very fast transient regimes,
compared to the rest of the system dynamics, one may
use approximation to systematically eliminate these regimes
and compensate for their elimination [6]. For example, in
enzymatic reactions, a substrate reacts very quickly with an
enzyme to produce a compound, which subsequently, and
much more slowly, breaks down into a product of the reaction
and the enzyme itself. In this case, one can use the so-called
quasi-steady-state assumption to eliminate the fast reaction
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Fig. 1. Emergent behavior in cardiac-cell networks. Top: Electrocardiogram.
Middle and bottom: Simulation and experimental mappings of voltage waves
occurring in a small rectangular area on the surface of the heart.

and derive a sigmoidal dependence of the product on the log
of the substrate, called the Michaelis-Menten equation [7], [8].

Similar to the rectangular (step or Heaviside) switches used
in digital-computer models, sigmoidal switches (dependencies)
occur everywhere in biological models: from molecular to
cellular models, and from organ to population models [9], [10].
In most cases, they result from the same kind of abstractions
discussed above: eliminate fast, transitory components. Unlike
in digital-computer models, however, the switching speed of
sigmoids plays an important role. Biology is sophisticated!

DEMs with state variables whose rate of change is con-
trolled with sigmoidal switches are still intractable from an
analysis point of view. Research in genetic regulatory net-
works overcomes this problem by approximating sigmoids
with either steps or with ramps [11], [12], [13], [14]. This
leads to a piecewise-affine (multiaffine) model, respectively. In
such models, the dynamics within a hyper-rectangular region,
is completely determined by the dynamics of its corners,
enabling model analysis through the use of powerful discrete
abstraction and model-checking techniques [13].

In prior work, one of the authors (Fenton) co-developed an
extremely versatile electrical model for cardiac cells involving
just 4 state variables and 26 parameters [15]. For reasons to
be made clear, we refer to this model as the minimal resistor
model (MRM). After its parameters are identified from either
experimental data or DMM-based simulation results, the MRM
is able to accurately reproduce the desired behavior. In fact,
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Fig. 2. Overview of our approach
the MRM identified from experimental data reproduces the
experimentally observed behavior with greater accuracy than
any of the DMMs. Moreover, its simulation speed is orders of
magnitude faster than that of the DMMs.

The success of the MRM intuitively relies on the same kind
of abstraction as discussed above: the large variety of currents
traversing the cell membrane are lumped together in only three
currents: the fast input current, the slow input current, and the
slow output current. These currents are regulated by three gate
variables, which together with the voltage, define the MRM’s
state variables [15]. The lumping process is akin to removing
and compensating for fast components [8], [6].

In the MRM context, one may restate the cardiac disorder
question as follows: what are the parameter ranges for which
the MRM accurately reproduces cardiac abnormalities? Once
these ranges are identified, one may exploit the correspondence
between the MRM and DMMs to infer the corresponding
parameter ranges in the DMMs. The molecular relevance of
the DMMs then allows to target treatment strategies to the
molecular components responsible for the disorder.

Despite its simplicity compared to DMMs, the MRM is
still intractable from an analysis point of view. Its electrical
formulation, not only uses sigmoidal switches to control the
gating variables, but also uses them to model gated resistors.
As such, sigmoids occur both as numerators and denominators
in the state equations. As part of our effort to simplify the
MRM, we prove that sigmoids are closed under reciprocal
operation. This allows us to bring the MRM to a canonical
form, which we call the minimal conductance model (MCM).
Intriguingly, this is the form of a genetic regulatory network
model (GRM). Hence, this transformation not only exposes the
unity of biology, but also allows us to leverage tools developed
for GRMs for the analysis of cardiac models.

While in a qualitative GRM sigmoidal switches are approxi-
mated with steps or ramps, this is impossible to do in the
MCM without considerably distorting its original behavior. We
therefore approximate the shallow sigmoids of the MCM with
a succession of ramps, the number of which depends on the de-
sired accuracy. For analysis purposes, it is critical to minimize
the number of ramps used and to avoid arbitrary choices. We
therefore adapt a dynamic programming technique [16], to find
the optimal number of segments, typically of different length,
minimizing for all sigmoids at the same time, a sigmoidal-
linearization error. This results in a hybrid-automaton model
with multiaffine behavior in each mode (MHA).

By recasting the intractable parameter-range identifica-
tion problem for MCMs in terms of MHAs, we now have
a tractable problem. Moreover, certain MHA parameter-
identification problems can be seen as a special case of the
GRM parameter-identification problem: find the uncertain (due
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Fig. 3. Threshold-based switching functions.

to experimental barriers or measurement errors) parameter
ranges that lead to a robust behavior satisfying a given
temporal logic property [13]. Hence, for these disorders, we
can leverage tools already developed for GRMs to address the
MHA problem. Conversely, qualitative GRM can exploit our
linearization technique in order to obtain accurate piecewise-
multiaffine models from the experimental data.

The particular cardiac-disorder question addressed by this
paper is, under what circumstances may cardiac-cell excitabil-
ity be lost? A region of unexcitable cells within cardiac tissue,
can be responsible for tachycardia or fibrillation: 1) The region
becomes an obstacle, in the way of the propagating electrical
wave; 2) This triggers a spiral rotation of the wave, a condition
known as tachycardia; 3) The spiral may then eventually
break up into many spirals, a condition known as fibrilla-
tion. Studying the parameter ranges for which cardiac cells
loose excitability, and identifying the responsible molecular
processes, is therefore an important question in the treatment
of cardiac disorders. Loss of excitability can be formulated as
an LTL formula, for which the Rovergene tool [13] automat-
ically infers nontrivial parameter ranges. To the best of our
knowledge, this is the first result of this kind.

Our overall approach is summarized in Figure 2. The rest
of this paper is organized accordingly, as follows.. Section II
introduces biological switches and their formal description.
Section III reviews the MRM. In Section IV, we transform
the MRM to an MCM, which is linearized in Section V. Sec-
tion VI considers the parameter-range-identification problem.
Section VII concludes and discusses future work.

II. BIOLOGICAL SWITCHING

As discussed in Section I, biological switching is sigmoidal.
In this paper, we are interested in a particular class of on (+)
and off (-) sigmoidal switches, namely the logistic functions.
The sigmoidal on-switch is shown in Figure 3. The off-switch
is defined as: S

−(u,k,θ) = 1−S
+(u,k,θ).

We typically scale S so that it varies between a minimum
value um and a maximum value uM , both positive:

S
+(u,k,θ,um,uM ) = um +(uM − um)S+(u,k,θ)

S
−(u,k,θ,um,uM ) = S

+(u,k,θ,uM ,um)

Note that S
+(u,k,θ) = (1 + tanh(k(u− θ)))/2, which is an-

other way of expressing the logistic function.
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Fig. 4. APD, DI, and restitution at 10% of the maximum value of the AP.

If an on-sigmoid is very steep, then it can be approximated
with a Heaviside (or step) switch, as shown in Figure 3.
The off-step is defined as: H

−(u,θ) = 1−H
+(u,θ). As with

sigmoids, step-switches can be scaled between um and uM .
If an on-sigmoid is steep but not very steep, it can be

approximated with a ramp, as shown in Figure 3. The off-ramp
is defined as: R

−(u,θ1,θ2) = 1−R
+(u,θ1,θ2) Ramps can also

be scaled between between um and uM .
If the sigmoid is slow, then, as shown in Section V, it can

be approximated with a sequence of ramps.

III. THE MINIMAL RESISTOR MODEL

Based on previously published data [17], Fenton co-
developed a minimal (resistor) model (MRM), of the action
potential produced by human ventricular myocytes [15]. An
action potential (AP) is a change in the cell’s transmembrane
potential u, as a response to an external stimulus (current).
If the stimulus e comes from the neighboring cells, then its
value is ∇(D∇u), where D is the diffusion coefficient and
∇ is the gradient operator. The shape of an AP, its duration
(APD), the diastolic interval (DI), and the AP restitution curve
(dependence of the APD on the DI) are depicted in Figure 4.
Intuitively, the membrane acts like a capacitor, requiring some
time to recharge after it discharges. The more time it has to
recharge, the greater (and longer) the AP. Note that the AP
value u is scaled between 0 and 1.5 in the MRM model.

The MRM differs from more complex ionic models (DMM)
in that instead of reproducing a wide range of ion channel
currents, it considers the sum of these currents partitioned
into three main categories: fast inward Jfi (Na-like), slow
inward Jsi (Ca-like), and slow outward Jso (K-like). The
flow of these total currents is controlled by a fast channel
gate v and two slow gates w and s. Together, they retain
enough structure such that with parameters fitted from either
experimental data or from DMM simulation results, the MRM
accurately reproduces the behavior in question.

Among fitted parameters are the voltage-controlled resis-
tances τv , τw, and τs, and the equilibrium values v∞ and w∞.
The differential equations for the state variables are as follows:

u̇ = e− (Jfi(u, v) + Jsi(u, w, s) + Jso(u))
v̇ =H

−(u, θv) (v∞ − v)/τ
−
v (u) −H

+(u, θv)v/τ
+
v

ẇ =H
−(u, θw)(w∞ − w)/τ

−
w (u)−H

+(u, θw)w/τ
+
w

ṡ =(S+(u, ks, us)− s)/τs(u)

TABLE I
PARAMETER VALUES FOR MRM AND MCM

MRM MCM MRM MCM
Par Val Par Val Par Val Par Val

θo 0.006 θo 0.006 τ−v1 60 g−v1 0.01666

u−w 0.03 u
�−
w 0.0406 τ−v2 1150 g−v2 0.00086

θw 0.13 θw 0.13 τ−w1 60 g−w1 0.01666
θv 0.3 θv 0.3 τ−w2 15 g−w2 0.06666
uso 0.65 u�so 1.4824 τo1 400 go1 0.0025
us 0.9087 us 0.9087 τo2 6 go2 0.16666
uu 1.55 uu 1.55 τso1 30.0181 gso1 0.03331
w∗∞ 0.94 w∗∞ 0.94 τso2 0.9957 gso2 1.00431
k−w 65 k−w 65 τs1 2.7342 gs1 0.36453
kso 2.0458 kso 2.0458 τs2 16 gs2 0.0625
ks 2.0994 ks 2.0994 τfi 0.11 gfi 9.0909
τ+
v 1.4506 g+

v 0.68936 τsi 1.8875 gsi 0.5298
τ+
w 200 g+

w 0.005 τw∞ 0.07 gw∞ 142.8571

where the three currents are given by the following equations:
Jfi(u, v) =−H

+(u, θv)v(u− θv)(uu − u)/τfi

Jsi(u, w, s) =−H
+(u, θw)ws/τsi

Jso(u) =+H
−(u, θw)u/τo(u) + H

+(u, θw)/τso(u)
The voltage-controlled resistances are defined as follows:

τ
−
v (u) =H

+(u, θo, τ
−
v1

, τ
−
v2

)
τo(u) =H

−(u, θo, τo2 , τo1)
τs(u) = H

+(u, θw, τs1 , τs2)
τ
−
w (u) =S

−(u, k
−
w , u

−
w , τ

−
w2

, τ
−
w1

)
τso(u) =S

−(u, kso, uso, τso2 , τso1)

Finally, the steady state values for gates v and w are:
v∞(u) =H

−(u, θo)
w∞(u) =H

−(u, θo)(1− u/τv∞) + H
+(u, θ

−
v )w∗

∞

The values of the parameters for the epicardial (surface)
myocytes, as fitted in [15], are given in Table I.

IV. THE MINIMAL CONDUCTANCE MODEL

While much simpler than DMMs, the MRM model is
still intractable from an analysis perspective. Its electrical
formulation not only uses sigmoidal (and step) switches to
control the state variables, but also uses them to control the
value of the resistances. As a consequence, sigmoids occur
both as numerators and denominators in the state equations.

In order to simplify the MRM model, we prove that scaled
sigmoids (or steps) are closed under division; that is, the
reciprocal of a scaled sigmoid is also a sigmoid. This result
allows us to bring the MRM model to a canonical form, which
we call the minimal conductance model (MCM).

Theorem 1 (Sigmoid closure). For a, b > 0, scaled sigmoids
are closed under multiplicative inverses (division):

S
+(u, k, θ, a, b)−1 = S

−(u, k, θ + ln(a/b)/2k, b
−1

, a
−1)

Proof: The proof proceeds by successively transforming
the inverse of a scaled sigmoid to a scaled sigmoid:

S
+(u,k,θ,a,b)−1 =

1
a+ b− a

1 + e−2k(u− θ)

=
1 + e

−2k(u− θ)

b + ae−2k(u− θ)
=
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Fig. 5. Response of MCM HA state variables to a stimulus.

1
a
× a− b + b + ae

−2k(u− θ)

b + ae−2k(u− θ)
=

1
a
−

1
a −

1
b

1 + a
b e−2k(u− θ)

=

1
a
−

1
a −

1
b

1 + e
−2k(u− (θ + ln a−ln b

2k ))
= S

−(u,k,θ +
ln

a
b

2k
,
1
b
,
1
a
)

Obviously, H
+(u, θ, a, b)−1 =H

−(u, θ, b
−1

, a
−1). Table I

gives the values of the conductances gi =1/τi of the MCM
for each resistance τi. For each threshold ui in the MRM
model, we also provide the associated MCM threshold u

�
i.

Revising the MRM model by replacing each factor 1/τi with
gi and each threshold ui with the associated MCM threshold
u
�
i results in the differential equations for the MCM model.

Note that in the MCM, sigmoids and steps only appear at
the numerator. For further clarity and future reference, we
provide here the complete definition of the MCM model. The
differential equations for the state variables are:

u̇ = e− (Jfi(u, v) + Jsi(u, w, s) + Jso(u))
v̇ =H

−(u, θv) (v∞ − v)g−v (u) −H
+(u, θv)v g

+
v

ẇ =H
−(u, θw)(w∞ − w)g−w (u)−H

+(u, θw)w g
+
w

ṡ =(S+(u, ks, us)− s) gs(u)

where the three currents are given by the following equations:

Jfi(u, v) =−H
+(u, θv)(u− θv)(uu − u)v gfi

Jsi(u, w, s) =−H
+(u, θw)ws gsi

Jso(u) =+H
−(u, θw)u go(u) + H

+(u, θw) gso(u)

The voltage-controlled conductances are defined as follows:

g
−
v (u) =H

−(u, θo, g
−
v2

, g
−
v1

)
go(u) =H

+(u, θo, go1 , go2)
gs(u) = H

−(u, θw, gs2 , gs1)
g
−
w (u) =S

+(u, k
−
w , u

�−
w , g

−
w1

, g
−
w2

)
gso(u) =S

+(u, kso, u
�
so, gso1 , gso2)

Finally, the steady state values for the gates v and w are:

v∞(u) =H
−(u, θo)

w∞(u) =H
−(u, θo)(1− u gv∞) + H

+(u, θo)w∗
∞
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Fig. 6. Hybrid automaton for the MCM model.

An interesting feature of the MCM is that it has the
canonical form of a genetic regulatory network (GRN) model.

Definition 1 (GRM). The sigmoidal form of a genetic regu-
latory network model (GRM) consists of a set of differential
equations in which the i-th equation has the following form:

u̇i =
mi�

j=1

aij

nj�

k=1

S
±(uk, kk, θk)−

m�
i�

j=1

bij

n�j�

k=1

S
±(uk, kk, θk)

where S
± are either on- or off-sigmoidal switches, and ai and

bi are the expression and inhibition coefficients, respectively.

Approximating sigmoids with steps (or ramps) in the GRM,
that is, assuming that switching is very steep (or steep),
results in a set of piecewise-affine (-multiaffine) differential
equations [11], [12] (or [13]). The second summand is often
a simple decay term. We believe that that further advances
will uncover genetic regulatory networks that contain slow
sigmoids as well.

Since each (free) variable on the right-hand side of the
differential equations of the MCM corresponds to a ramp,
the MCM has the form of a GRM, where the very steep (or
steep) sigmoids have been approximated with steps (or ramps).
The u

2 term in Jfi can be understood as the product of two
complementary on- and off-ramps. This is not allowed in [13]
but, in general, is a valid term of a GRM [9], [10].

The step-switches occurring in the differential equations of
the MCM, indicate that the MCM specifies a mixed discrete
and continuous behavior. In fact, the MCM is equivalent to a



hybrid automaton (HA). Consider the partition of the u-axis
by the thresholds occurring in step-switches. Each mode of the
HA corresponds to the u-interval defined by two successive
thresholds, and each transition corresponds to the discrete
jump of one of the step-switches. The MCM HA is given
in Figure 6. Nonlinear terms are shown in red color and
exponential degradation terms in blue. The currents have been
expanded and broken according to the modes.

The behavior of the MCM HA state variables in time and
as a response to an super-threshold external stimulus is shown
in Figure 5. The voltage intervals corresponding to the modes
of the HA are highlighted using the same color as in the HA.

Mode [0 θo) (orange) is a recovering resting mode. In this
mode, gates v and w open to their maximum value, and gate s

remains closed. Slow sigmoids S
+(u, ks, us) and g

−
w (u) have

essentially their minimum value. The only transmembrane
current is the slow output current Jso(u), whose overall
behavior mimics the ionic (potassium) K-current. This current
causes an exponential decay of u. Conductances g

−
v1

and g
−
w1

control the recovery speed of v and w. Hence, their values are
important in properly reproducing AP restitution.

Mode [θv, uu) (green) is a successful AP mode, initiated by
a super-threshold stimulus. Factor (u− θv)(uu−u) in the fast-
input current Jfi mimics the fast opening of the (sodium) Na-
channel. This leads to a dramatic membrane depolarization,
during which u reaches its peak value uu. At the same time,
but with a slight delay, gate v, which mimics the closing of the
Na-channel, closes, thus blocking the Jfi current. The closing-
time of v is solely controlled by the rate constant g

+
v and the

initial value of v. The slow-input (calcium) Ca-like current,
Jsi, is still flowing, which prolongs the duration of the AP,
providing the cardiac muscle enough time to contract. The
value of Jsi is essentially controlled by gate s, which mimics,
through its slow sigmoid, the behavior of the Ca-channel
opening-gates. Gate w, which mimics the Ca-channel closing-
gate, eventually blocks Jsi, at rate g

+
w . The slow-output, K-like

current, Jso, reaches its peak value when the slow sigmoid gso

switches on towards its maximum value gso2 (u > u
�
so).

In mode [θo , θw) (blue), gate v starts closing at rate g
−
v2

,
while gate w is still opening. The closing/opening of these
gates does not affect the value of u, as this still decays at rate
go2 . It does, however, affect the initial values of v and w for
the next AP, which in turn affects the length of this AP. It also
affects the AP propagation speed, the so-called AP conduction
velocity (CV) in a myocyte network.

In mode [θw , θv) (pink), gate v closes at the same rate as
before, but now gate w is also closing, at rate g

+
w . Current Jso

changes from an exponential decay to a sigmoid, and the slow-
input current starts flowing proportional to ws. Gate s adjusts
the “expression” coefficient of its slow sigmoid to gs2 .

V. THE MULTIAFFINE MODEL

Although the MCM is simpler than the MRM and consid-
erably simpler than the DMMs, its analysis is still intractable
due to the presence of sigmoidal switches. GRN models
overcome this problem by assuming that every sigmoid is steep
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enough to be accurately approximated with either one step or
one ramp. While this assumption is debatable for GRMs, it
does not hold for MCMs. Its sigmoids are too slow to be
approximated by either a single step or a single ramp, without
seriously distorting the original MCM behavior.

Slow sigmoids can be accurately approximated with se-
quences of ramps. This, however, raises a new question: how
to choose as few ramps as possible, while still maintaining
a desired approximation error? Additionally, since each suc-
cessive pair of ramp thresholds introduces a new mode in the
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HA, how to choose the same thresholds for all sigmoids?
In the following, we show that all of these goals are achievable;
i.e., there is an optimal solution, to the slow-sigmoid approxi-
mation problem, which minimizes a given approximation error
in a global way. Our approach is based on and extends a
dynamic programming algorithm developed in the computer
graphics community for approximating digitized polygonal
curves [16] with minimal error. The MATLAB code for the
main function, optimalLinearApproximation, is shown on previous
page, where for readability, comments are displayed in green.

The function’s input is a set of curves (digitized with the
same number of points), and a number S of segments to be
used by the polylines, optimally interpolating the curves. The
curves are given as a vector x of P x-coordinates, and a matrix
y of C rows, each consisting of P y-coordinates.

The function’s output consists of matrices e, a, b and of
vector xb. Each entry e(c,s,i), a(c,s,i) and b(c,s,i) gives the error,
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Fig. 7. Linearization of the orange mode of the MCM HA.

slope, and y-intercept, respectively, of the i-th segment, in the
optimal interpolation polyline of curve c, using s segments.
Each entry xb(s,i) is the x-coordinate of breaking point i, of
the optimal interpolation polylines, using s segments.

The function first determines the number of points P in
each curve, and the number of curves C. It then initializes the
dynamic programming storage tables cost(P,S) and father(P,S).
Each entry cost(p,s) stores the cost from point 1 to point p,
of the optimal interpolation polyline consisting of s segments.
Each entry father(p,s), stores the predecessor of point p on the
optimal-cost polyline consisting of s segments. To speed up
the search, we use an error matrix error(P,P), such that each
entry error(p,q) caches the maximum error of the segment (p,q)
with respect to all of the given curves.

Then, in a classic dynamic programming fashion, optimalLi-
nearApproximation fills its solution tables bottom up. First, for all
points in the curve (except 1), it computes the cost and father,
of the 1-segment polyline starting from point 1. Then, knowing
the optimal cost of all s-segment polylines from point 1 to any
point i that is less than or equal to p, it computes the optimal
cost of an s+1-segment polyline from point 1 to point p+1, by
choosing the s-segment polyline, whose cost is minimal when
increased with error(i,p+1).

The value stored in error(p,q) is computed with the (nested)
function segmentError. Its input consists of vectors x and y,
defining a curve segment. Its output consists of error e, and
coefficients a and b of the line y(x) = ax+ b passing through
the first and the last points of the curve segment. Error e is
computed by summing up, for each point p on the curve, the
square of the perpendicular distance from (x(p),y(p)) to y.

Once the solution tables are completely filled, optimalLine-
arApproximation calls nested function extractAnswer to traverse
table father in reverse order, and produce matrices e, a, b, and
xb. These matrices have the same format as the output of the
caller function, optimalLinearApproximation.

Our implementation of segmentError also allows the use of
linear regression instead of linear interpolation. This leads
to an optimal approximation that, for the same error, has
fewer segments. However, linear regression also introduces
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Fig. 9. Linearization of the pink mode of the MCM HA.

discontinuities at the breaking points of the optimal polylines,
as the line segment resulting from regression does not typically
start and end on the curve. When approximating a single
curve, one can choose as new breaking points the points where
the polyline segments intersect. Unfortunately, it is not clear
how to generalize this approach to a set of curves, without
introducing unnecessary breaking points.

As in GRMs, we assume that the thresholds and slopes of
steps and sigmoidal switches are known and fixed. This is a
reasonable assumption, as these parameters can be accurately
identified from simulation or experimental data. We can thus
linearize the MCM HA one mode at a time. The result is a
multiaffine hybrid automaton (MHA).

Figure 7 presents our linearization of the orange mode of
the MHA. There are three nonlinear functions: sigmoids g

−
w (u)

and S
+(u, us, ks), and product (1−ugw∞)g−w . The last is

treated separately, as the linearization of g
−
w (u) multiplied by

(1−ugw∞) results in a u
2 term. A two-segment linearization

(two modes in the MHA) results in a very small error.
Figure 8 presents our linearization of the blue mode of the

MHA. There are two nonlinear functions: sigmoids g
−
w (u)

and S
+(u, us, ks). In this case, we needed a six-segment

linearization (six modes in the MHA) to achieve a small
approximation error. Note that the sensitivity of the MCM
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Fig. 11. Comparison of the AP shape and restitution in cable.

behavior to the linearization error is also very important.
Figure 9 presents our linearization of the pink mode of the

MHA. There are two nonlinear functions: sigmoids gso(u) and
S

+(u, us, ks). A four-segment linearization (four modes in the
MHA) achieves a small enough approximation error.

Finally, Figure 10 presents our linearization of the green
mode of the MHA. This is the most sophisticated mode.
It contains three nonlinear functions: sigmoids gso(u) and
S

+(u, us, ks) and the parabolic term (u− θv)(uu−u). Al-
though gate v closes very rapidly, nullifying the parabolic
term in Jfi , voltage u traverses in the meantime the entire
interval [θv, uu). Hence, one needs to linearize the parabolic
term over this entire interval. This leads to a quite costly,
but inevitable linearization via 14 segments (14 modes in the
MHA). In our experiments, fewer segments have lead to an
unacceptable approximation of the MCM behavior.

To asses the accuracy of the MHA, we performed extensive
1D and 2D simulations, in a cable of 100 cells and a grid
of 800× 800 cells, respectively. Although the 1D simulation
was used to determine the behavior of a single cell only—
for example, cell number 50—the use of a cable is necessary,
as it is known that cells behave differently when interacting
with neighboring cells. Many cardiac models, for example [2],
accurately reproduce the AP when simulated in isolation, but
fail to reproduce the desired behavior in a cable.

Figure 11 shows the restitution curves of the MCM and
MHA models. Each point APD(d) on these curves, was
obtained by first pacing the MCM and the MHA models at



Fig. 12. Spiral wave and tip movement comparison in an 800× 800 grid.

the largest DI value, and then abruptly changing the pacing to
DI d. For each value of d, we also compared the AP shapes
AP(d). One such comparison is given in Figure 11. In both
cases (restitution and AP shape), the MHA approximated the
MCM with sufficient accuracy.

In Figure 12, we compare the behavior of the MCM and
MHA models on a 2D grid of 800× 800 cells. The comparison
uses a well-established protocol for the initiation of a spiral
wave in cardiac ventricular tissue. We have also tracked the
movement of the tip of the spiral over time, which is shown
as a dark-blue curve in Figure 12. The 2D simulation also
confirms the very good accuracy of the MHA model.

The simulations where performed on a CUDA PC equipped
with four GPU processors. *****EZIO SHOULD COM-
PLETE THE SETUP DESCRIPTION***** In this setting, we
observed a 1.43 speedup in MHA simulation times compared
to MCM. Note that it is possible to table sigmoid and parabola
values to speedup MCM simulation times [18]. This strategy,
however, considerably increases the memory demand for the
same accuracy and speed, and renders analysis intractable. Our
linearization approach can be viewed as an optimal tabling.
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Fig. 13. The multiaffine hybrid automaton.

VI. PARAMETER-RANGE IDENTIFICATION

The linearization algorithm presented in Section V, returns
for each mode [θ1, θ2), the parameter sequences ai and bi, and
the threshold sequence xi. Subscript i ranges over the number
of segments chosen, in order to fulfil a desired approximation
error e. For each i, the returned values define a line segment
y(x) = ax+ b within the interval [xi, xi+1).

For the first segment, x1 = θ1, and for the last segment,
xn = θ2. Now consider segment [xi, xi+1). The minimum
value of y(x) is yi = aixi + bi and the maximum value of y(x)
is yi+1 = aixi+1 + bi. Together with the threshold values, they
define the scaled ramp R

±(x, xi, xi+1, yi, yi+1). This is an on
(+) ramp, if yi≤ yi+1 and an off (-) ramp if yi≥ yi+1.

Since the ramps have to be summed up, for each i> 1, we
have to adjust the y coordinate, by subtracting the maximum
value of the previous ramp. Hence, these ramps become
R
±(x, xi, xi+1, yi− yi−1, yi+1− yi−1).
Once the scaled ramps are computed and summed up, for

each mode of the MCM HA, one obtains a multiaffine hybrid
automaton (MHA), as shown in Figure 13. The remaining
parameters of the MHA are now highlighted in red color. The
MHA modes have become super-modes, each consisting of as
many sub-modes as there are distinct indices in the sums.

The MHA however, is not suitable as input to Rovergene
for two reasons: 1) Rovergene expression terms have to be
scaled ramps; 2) Rovergene does not support steps. The first
problem is overcome by replacing variables with ramps. For
example, variable v occurring on the right-hand side of u̇ in the
green mode, is replaced with the ramp R

+(v, 0, 1). The second
problem is overcome by replacing steps with very-steep ramps.
This amounts to introducing for each threshold θi, separating
modes [θi−1, θi) and [θi, θi+1), a just-before θi threshold
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ṡ =(R−(u,θ
−
w ,θw) gs1 +R

+(u,θ
−
w ,θw) gs2)�25

i=0 R
+(u,θi,θi+1,usi ,usi+1)−R

+(s,0,1)

where the thresholds (except for the new ones), voltages, and
conductances match the ones in the MHA. We call this system
a piecewise-multiaffine differential equations model (MEM).

As discussed in Section I, a biologically relevant question
that we would like to answer is, under what circumstances a
cell may loose excitability? At molecular level, this is due to
an improper functioning of the cardiac-cell ionic channels.

To identify the molecular processes responsible for this dis-
order, we first reformulate the above question, as a parameter-
range identification question: What are the parameter ranges
for which the above MEM fails to generate an AP?

This property may be specified in linear temporal logic
(LTL) as follows: G (u < θv), where G is the LTL globally
(always) temporal operator. The property states that in all
executions of the DEM (an implicit universal quantification of
LTL over executions) and in all moments of time (an explicit
quantification in LTL with operator G, over all states of a
single execution), the voltage value is below θv . We would
like this property to hold for all stimulus durations. In terms
of the MCM HA in Figure 13, this property is true due to the
interplay of the ranges of conductances go1 , go2 , gsi and gso.

To identify these ranges in an automatic fashion we use the
Rovergene tool [13] co-developed by one of the co-authors
(Batt) with input the above MEM and LTL formula, and initial
region: u∈ [0, θ1], 0∈ [0.95, 1], w∈ [0.95, 1] and s∈ [0, 0.01].

The u-thresholds and the initial region impose the following
partition on the ranges of state variables: [0,. . .,θ29] for u (we
have added the just-before thresholds), [0, 0.95, 1] for v and
w and [0, 0.01, 1] for s. The parameter ranges with biological
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Fig. 14. Simulation results for a sample in each of the above ranges.

significance were taken to be: [1, 180] for go1 , [0, 10] for go2 ,
[0.1, 100] for gsi and [0.9, 50] for gso.

The behavior of the MEM in each hypercube of the state-
space partition is completely determined by its corners, so the
existence of transitions from one hypercube to its neighbours,
can be computed, by evaluating the MEM in the corners. In
each corner, the MEM becomes an affine system in the MEM
parameters. Solving these systems one obtains the separating
hyperplanes of positive and negative sign of the derivatives
in the MEM. Finally, taking into account the desired LTL
property, one obtains the parameter ranges for which the
property is satisfied. In our case these ranges returned are:

166.9494≤ go1 ≤ 180, 7.6982≤ go1 ≤ 10

−0.24784 gsi + 0.9688 gso ≤ 26.0888

They have the following meaning. If go1 ≥ 166.9494 then
no matter how long a stimulus of magnitude 1 is applied, the
voltage u never leaves the orange interval (mode) [0, θo]. If on
the other hand go1 < 166.9494, then u reaches the blue interval
(mode) [θo, θw). Since we are considering stimuli of any width
(note that time is abstracted away by Rovergene), once u

enters the blue range, its behavior is completely determined by
this mode. If go2 ≥ 7.6982 then u can never leave the mode.
If go2 < 7.6982 then u will enter the pink interval (mode)
[θw, θv). In this mode the behavior of u is determined by the
interplay between gso and gsi. If the above linear combination
is satisfied, one can never leave this mode.

The corresponding simulation, for a sample of values in
the above parameter ranges is shown in Figure 14. To make
sure that we run the same model as Rovergene, we also
developed a Rovergene simulation tool that, given a Rovergene
model as input, simulates its dynamic behavior in Matlab. This
simulation tool proved to be an invaluable debugging tool,
during the model encoding in Rovergene.



VII. CONCLUSIONS AND FUTURE WORK

Although formal techniques were used before to analyze
cardiac-cell properties (see e.g. our work in [19], [20]), this
paper presents to the best of our knowledge, for the first time,
an approach to automatically identify the parameter ranges
of a biologically-relevant cardiac model, guaranteeing that the
model accurately reproduces a particular cardiac disorder.

The approach takes the nonlinear cardiac-model in [15],
brings it first into a genetic regulatory network sigmoidal
form, then linearizes and formats it to a piecewise-multiaffine
set of differential equations, and finally leverages the tools
previously developed for the automatic parameter-range iden-
tification in genetic regulatory networks [13], to automatically
check a disorder expressed in linear temporal logic.

In particular, the property we studied in this paper is lack of
cardiac-cell excitability. This is an invariant property, where
time is abstracted away. In future work, we plan to investigate
more sophisticated LTL properties of singles cells, as well as
reachability properties of cell networks (e.g. spirals).

Many abnormalities responsible for cardiac disorders are
time or rate dependent properties, that cannot be checked
with the Rovergene tool, due to its underlying finite-automata
abstraction. For example, action potential duration or spiral
breakup (fibrillation) are such properties. In future work we
therefore plan to investigate novel parameter-range identifica-
tion approaches, that use timed-automata[21], [22] or linear-
automata[23], [24] abstractions instead.
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